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ABSTRACT 

Integral-abutment bridges eliminate the expansion joints that are generally 

used to accommodate bridge length changes due to daily and annual temperature 

variations. Additional stresses and displacements due to the thermal loading are 

induced in these indeterminate structures that are not typically associated with 

bridge structures supported on pins and rollers. The goal of this research was to 

determine the effects of the thermal loading on two integral-abutment bridges. 

Extensive field monitoring was conducted on two, in-service, skewed, 

integral-abutment bridges located in central Iowa. The experimental program 

included long-term monitoring of longitudinal and transverse abutment 

displacements, relative displacements of the superstructure over the pier caps, 

strains in selected steel HP-shaped piles supporting the abutments, strains in 

several PC girders, bridge member temperatures, and end fixity of selected piles 

and girders in the abutments. The experimental temperature and displacement data 

was used to calibrate an ANSYS, finite-element model for each of the two monitored 

bridge structures. Experimental strains were verified and maximum strains due to 

the thermal loading were predicted for various members using the finite-element 

models. 
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1 INTRODUCTION 

1.1 Background 

Traditional bridge structures use expansion joint systems to accommodate 

bridge length changes due to annual temperature variations. Maintenance of the 

expansion joints incurs additional costs over the life of highway bridges. Water 

runoff from the bridge deck, often containing corrosive de-icing agents, permeates 

through the joint seals leading to corrosion and deterioration of the expansion joints. 

Integral-abutment bridges eliminate the expansion joints by casting the 

superstructure together with the abutment wall. Eliminating the expansion joint 

reduces the initial cost, maintenance cost, and also the cost of future modification 

such as widening [1,2]. 

Many states are currently designing integral-abutment bridges. A recent 

survey by the New York Department of Transportation indicated that more than thirty 

state transportation agencies in the United States and a few provincial agencies in 

Canada have experience with integral-abutment bridges. Most agencies indicate 

that the structures are performing well. Transportation agencies typically impose 

limits on bridge lengths and skew angles, which are often based on the agency's 

previous experience rather than a rational analysis. Bridge length limitations vary 

from 200 ft to 800 ft for bridges with precast-concrete (PC) girders [3]. 

Improved knowledge of the behavior of integral-abutment bridges is desired 

to develop a rational method for design. A primary concern of designers and 

researchers are the forces induced in the abutment and abutment piles due to the 



www.manaraa.com

2 

expansion and contraction of the bridge. Previous studies have focused on, 

amongst other issues, the capacity of the piles, soil pressures acting on integral

abutments, bridge temperatures, thermal expansion properties of the construction 

materials, and creep and shrinkage effects [4-8). 

Integral construction introduces additional structural stresses as a result of 

the restrained displacement of the bridge superstructure. Bridge displacements are 

caused by the thermal expansion and contraction of the bridge and by the creep and 

shrinkage of the concrete. The increased stresses must be considered when 

designing an integral-abutment bridge. The displacement of the abutments into the 

abutment backfill creates pressures on the wall and introduces forces into the 

supporting piles. The restraining forces of the abutment backfill and piles create 

additional forces in the bridge superstructure. 

There are other benefits of integral construction other than reducing the cost 

of the structure. Reduced forming requirements and fewer parts results in more 

rapid construction. Integral construction of the girder and abutment provides 

additional capacity for seismic events. Tolerance problems associated with 

expansion bearings and joints are eliminated [2]. 

1.2 Objective and scope 

Two, prestressed-concrete (PC) girder, integral-abutment bridges were 

instrumented to measure temperature, strain, and displacements at various locations 

on the bridges over a period of about two years. A finite-element, analytical model 
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was developed for each of the two monitored bridges to aid in the understanding of 

the responses of integral-abutment bridges to temperature changes. 

The experimental investigation consisted of determining longitudinal and 

transverse abutment movements, strains in H-shaped steel piles, strains in 

prestressed concrete girders, temperature distributions, and the rotational fixity at 

the top of the piles and the ends of the girders in an abutment. Data were collected 

to measure effects of daily and seasonal temperature variations. 

The experimental data were used to calibrate and refine finite element bridge 

models. The recorded temperature data was used as the input into the finite

element models. The analytical strain and displacement responses were compared 

to the experimental measurements. Maximum bridge member strains were 

predicted by the finite-element models. 

Experimental results for entire duration of the monitoring period between 

December 17, 1997 and April 1, 2000 for the Guthrie County Bridge is included in 

this thesis. For the Story County Bridge, experimental results presented in this 

thesis are for the time period between July 8, 1998 and July 12, 1999. Experimental 

results for the Story County Bridge for the time period between July 12, 1999 and 

April 1, 2000 will be published in the final report for the Iowa Department of 

Transportation, which is scheduled for submittal in December of 2000. 
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2 LITERATURE REVIEW 

2.1 Current practice in the United States and Canada 

A survey of current practices for the design of integral-abutment bridges was 

performed by Kunin and Alampalli [9] for the New York State Department of 

Transportation. The questionnaire covered various aspects of the design and 

performance of integral-abutment bridges such as length and skew-angle limits, 

design assumptions, design procedures, and analysis procedures. 

A total of 39 state and provincial transportation agencies in the United States 

and Canada responded to the survey. Thirty-one of these agencies indicated they 

had experience with integral-abutment bridges. For the most part, only minor 

problems with this type of a bridge had been encountered, including minor cracking 

in the deck near the piers, concrete cracking and spalling in the girder bearing areas, 

drainage problems for the abutment backfill, and the settlement of the bridge 

approach slabs. Only the State of Arizona did not recommend the use of integral

abutment bridges based on their experience with expensive repairs of the approach 

slabs [9]. 

Usually, passive-soil pressure is applied in the design of integral-abutment 

bridges. A few agencies neglect the effect of earth pressure on the abutments 

during longitudinal expansion of the bridge. The States of Alaska and North Dakota 

assume a specific soil pressure regardless of the actual design conditions. About 

one-third of the responding agencies apply special construction details to reduce 

backfill pressures on the abutment walls. These details include the use of a granular 
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embankment with an underdrain, foam backing on the abutment wall, and providing 

a gap between the abutment wall and a geotextile-reinforced backfill. Most of the 

agencies neglect the effects of the bridge skew on soil pressure [9]. 

Most agencies use steel HP-shaped piles to support integral-abutment 

bridges. However, some agencies use PC pipe and concrete-filled, steel-shell piles. 

More than half of the agencies design these piles for axial load and bending moment 

effects. Depending on the pile-to-abutment connection detail, fixed, pinned, or free 

pile-head conditions are used in the bridge analysis. Only twelve of the agencies 

require the use of prebored holes for pile driving. These prebored holes are filled 

with a bentonite slurry or sands, or are left unfilled [9]. 

A similar survey was performed by Wolde-Tinsae, Greimann, and Johnson 

[1 O] in the early 1980's. Twenty-nine of the fifty-two responses indicated that 

integral-abutment bridges were used at the time of that survey. The length limit on 

PC girder, integral-abutment bridges did not change significantly during the time 

between the two surveys. More than half of the agencies oriented piles for strong 

axis bending in the early 1980's. The recent survey indicated that states are more 

frequently orienting piles for weak-axis bending that is induced by longitudinal bridge 

movements. Only four of the twenty-nine agencies indicated the use of prebored 

holes before pile driving in the early 1980's, compared to twelve of the thirty 

agencies in the more recent study. 
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2.2 Bridge field studies and instrumentation 

Hoppe and Gomez [11] monitored strain, temperature, and earth pressures 

for a two-span, composite, steel-girder bridge with integral backwalls during its 

construction and for two-and-a-half years after the completion of its construction. 

Earth pressures were monitored behind both abutments near the base of the 

abutment backwalls. Earth pressure was also measured near the bottom of the pile 

cap at one of the abutments, directly below the gage installed on the abutment 

backwall. Earth pressure within the backfill soil behind the pile cap was found to be 

nearly constant and close to the predicted at-rest soil pressure. Earth pressures 

directly behind the abutment backwall indicated the development of passive 

pressures at each end of the bridge. In the first two years after construction of the 

bridge, repeated resurfacing of the approach slabs was necessary due to excessive 

settlement of these slabs. The rate of settlement decreased in the second year after 

construction of the bridge. 

Hoppe and Gomez measured the combined effects of axial and bending 

strains longitudinal stress in the bottom flange of the steel girders. As the air 

temperature increased, the compressive strain in the steel girder near the abutment 

increased simultaneously with the soil pressure behind the backwall. Compressive 

strains in the girder near the abutment were also observed during the winter when 

the measured soil pressures were negligible. The authors attributed this to the 

thermal gradient through the superstructure. They noted that the stresses in the 

girders caused by the daily temperature fluctuations might be more critical than the 

compressive forces caused by the restraining forces of the abutment backfill. 
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Field tests of a steel-girder, integral-abutment bridge were performed by 

Construction Technologies Laboratories (CTL) [8] to determine the temperature 

gradients in a bridge superstructure. CTL determined that the positive temperature 

gradient recommended by the AASHTO Specifications (12] was conservative, and 

that the AASHTO temperature gradient followed the general shape of the 

experimentally-measured, temperature gradients within the cross section. The 

maximum, experimentally-measured temperature differential was approximately 

60% of the recommended maximum AASHTO temperature differential within a cross 

section. 

Long-term monitoring of an unskewed, PC girder, integral-abutment bridge in 

Minnesota was performed by Lawver, French, and Shield (13]. The abutment piles 

were oriented for weak-axis bending with respect to abutment displacements in the 

longitudinal direction of the bridge. Longitudinal abutment movement was primarily 

a translational movement that induced double curvature bending of the piles. 

Tensile strains, which were recorded in a reinforcing bar in the approach slab near 

the connection of the slab to the deck of the bridge, were measured in the winter as 

the superstructure pulled the abutment away from the backfill. 

Since these researchers applied strain gages to the abutment piles during the 

construction of the bridge, measurements were made of the induced axial strains in 

specific piles due to the weight of the bridge superstructure. For the combined dead 

load and thermal movements of the bridge, the maximum, axial, compressive strain 

in a monitored abutment pile was 390 microstrains. As the temperature of the bridge 

deck increased, the axial strains increased on an interior abutment pile and 
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decreased on an exterior abutment pile. The maximum longitudinal strains on an 

abutment pile that were induced by combined axial forces and bending moments 

corresponded to a compressive strain that was larger than the yield strain of the 

steel. The maximum combined strain was measured near the pile cap at the pile 

flange tips on the approach slab side of a monitored exterior pile. 

Static live-load tests of the bridge involved the use of dump trucks loaded with 

sand. The results from the live-load test indicated that the three bridge spans acted 

independent from each other. Although the spans acted independently, the end 

spans did not behave as simple spans. The experimental midspan moments for the 

exterior spans were approximately 30% smaller than those for a pinned-end span 

model, and 20% greater than the moments predicted from a pinned/fixed-end span 

model. The center span behaved as a simple span. 

2.3 Analytical studies 

Previous analytical studies have investigated many aspects of integral 

bridges. Research has included the reaction of the soil backfill behind a translating 

abutment, the pile-to-soil interaction, bridge displacements, stresses induced in 

bridge members, and concrete creep and shrinkage effects. 

CTL [8] performed a nonlinear, finite-element analysis involving the 

interaction between an abutment wall and the soil backfill. The CTL researchers 

determined that the Rankine, passive, soil-pressure model provided an adequate 

estimation of the soil pressures against the back of a bridge abutment when large 

abutment movements were caused by expansion of the bridge superstructure. The 
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Clough and Duncan [14] design curve for soil pressure that is based on wall 

movement provided a reasonable upper-bound for the soil pressure against an 

abutment experiencing large movements. A concentration of soil pressure occurs 

near the base of the abutment. This base pressure decreases with an increase in 

the abutment rotation. The CTL researchers determined that a decrease in 

compaction of the soil backfill from 90% to 80% will decrease the resultant passive

pressure soil force by a factor of 2.5. The researchers also determined that a 

decrease in the slope of the in-situ, backfill soil from 45° to 30° will decrease the 

resultant passive-pressure soil force by a factor of 2. 

Lehane, Keogh, and O'Brein [15] developed a simplified, elastic model to 

predict the axial forces and bending moments induced in the superstructure of a 

frame-type, integral bridge due to the thermal expansion of the bridge. An 

expression for the equivalent, linear-stiffness modulus for a cohesionless-soil backfill 

was developed for various dry-soil densities, effective soil stresses, and average, 

shear-strain levels. A simplified, plane-frame model that incorporated an equivalent 

abutment height and a translational, linear spring at the deck level was developed to 

represent the abutment and soil backfill system. The results from the simplified 

analytical model correlated well with the results predicted by a more detailed finite

element model. 

Ting and Faraji (16] performed a three-dimensional, finite-element analysis of 

a three-span, unskewed, steel-girder, integral-abutment bridge using GT-STRUDL 

[17]. The bridge deck and abutments were modeled using plate elements, and the 

girders, piles, piers, and pier caps are modeled as beam elements. Two conditions 
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were considered to represent the interaction between the girders and the deck: with 

and without considering eccentricity between the centers of gravity of the girders and 

deck. The soil backfill behind the abutments and against the piles were modeled as 

uncoupled, non-linear springs that were located at the abutment wall and pile nodes. 

The non-linear soil properties for the soil against the back of the abutment backfill 

and against the pile were based on design curves by Clough and Duncan [14] and 

the American Petroleum Institute [18], respectively. A soil-parameter study was 

conducted by varying the stiffness of the soil behind the abutment and against the 

piles: loose and loose, loose and dense, dense and dense, and dense and loose, 

respectively. 

Ting and Faraji determined that the eccentricity between the centers of gravity 

of the deck and girders must be considered to properly predict bridge behavior. 

Modeling the deck and girders without the proper eccentricity greatly decreases the 

flexural rigidity of the superstructure. For the models incorporating eccentricity of the 

deck and girder system, the abutment backfill stiffness controlled the displacement 

of the abutments. Longitudinal displacement of the base of the abutment ranged 

from 0.36 to 0.38 in. (9.1 to 9.7 mm) for a loose abutment backfill and 0.26 to 0.28 

in. (6.6 to 7.1 mm) for a dense abutment backfill. The abutment rotation was 

approximately 0.060° (1050 microradians) for a loose abutment backfill and about 

0.100° (1750 microradians) for a dense abutment backfill. The maximum moments 

in the piles, which occurred at the abutment-to-pile connection, ranged from 55 to 80 

k-ft (75 to 110 kN-m) for a loose abutment backfill and 20 to 35 k-ft (27 to 47 kN-m) 

for a dense abutment backfill. The abutment backfill nearly reached a full-passive-
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soil stress condition. The distribution of backfill pressures with depth was slightly 

nonlinear, with lower soil pressures near the bottom of the abutment. 

Ting and Faraji developed two-dimensional, finite-element models for the 

same bridge. One-seventh of the bridge cross section was modeled since the 

bridge contained seven piles per abutment and seven girders. Pier support 

conditions were varied using pins, rollers, or a pier model incorporating nonlinear

soil springs. For non-skew bridges, the abutment and pile displacements, the pile 

moments, and the girder moments from a two-dimensional model with the bridge 

piers modeled as roller supports had good correlation with those from a three

dimensional model. 

A two-dimensional model was developed by Girton [7] to predict the 

longitudinal movement of an abutment in an integral-abutment bridge. A frame 

model, which incorporated the flexural stiffness of the piles and the axial and flexural 

stiffness of the bridge superstructure, was developed that is used to determine the 

longitudinal displacement of the bridge. Girton neglected the abutment 

displacement restraint of the soil backfill, since the magnitude was small relative to 

the bridge movement. A bi-linear, temperature distribution through the depth of the 

superstructure was applied to the model. Girton also used the two-dimensional 

frame model for the prediction of pile strains due to longitudinal thermal movement 

of an abutment. 

A lateral-frame model was developed by Girton to predict the pile strains 

induced by the lateral movement of a skewed abutment. Equivalent cantilevers 

were used to model the piles. An axial spring at the bottom of the equivalent 
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cantilever length to represented the axial shortening of the pile. Transverse 

abutment movements were calculated for an applied lateral force that corresponded 

to the transverse component of a passive normal and frictional soil backfill forces 

acting on the abutment. 

Small-scale-model tests on steel H-shaped piles subject to lateral and vertical 

loads were performed by Amde, Chini, and Mafi [19]. The piles were tested in a tank 

that contained compacted sand with a uniform density throughout the depth. The 

first test involved measuring the vertical displacement response of a pile due to an 

applied axial load. A second test measured the flexural bending strains induced in 

the pile due to an applied lateral load at the top of a pile. Finally, the researchers 

performed a combined axial and lateral load test on the piles. 

Amde, Chini, and Mafi compared the experimental results for lateral pile 

displacements, bending moments due to lateral displacements of the pile head, and 

vertical load capacities with those results that were predicted by a nonlinear, finite

element program developed by Wolde-Tinsae, Greimann, and Yang [20] for soil-to

pile interaction. The soil force versus displacement curves were approximated using 

the Ramberg-Osgood model [21]. The finite-element predictions for the lateral 

displacement at the top of the pile were conservative for the lateral loading condition, 

i.e. the analytical displacement was greater than the experimental displacement for 

the same applied lateral load. The finite-element model underestimated the vertical

load capacity of a friction pile. For the case with a combined axial and lateral load 

on the piles, the vertical soil resistance was exceeded before a plastic hinge was 
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developed in the steel piles. This behavior was observed in both the experimental 

testing and the analytical models. 

Kamel, et.al. (22] investigated the use of PC piles in integral-abutment 

bridges. These researchers investigated the lateral load versus lateral deflection 

responses for PC piles and steel HP-shaped piles. Steel piles experienced greater 

lateral displacements than that for the PC piles before the pile cross section reached 

the allowable moment strength. The laboratory pile tests revealed that loose sand, 

which is typically used to fill prebored holes, had a significant effect on the lateral 

displacement of both types of piles. Maximum lateral displacements for a given pile 

were dependent on the lateral stiffness of the soil against the piles in the upper 1 O ft. 

of the pile length. Soil stiffness below this depth had a negligible effect on the lateral 

pile displacement at the pile head. This behavior was observed for both PC and 

steel HP-shaped piles. 

2.4 Integral-abutment design models 

2. 4. 1 Coefficient of thermal expansion and contraction of concrete (a-coefficient) 

The American Concrete Institute (ACI) publication ACI 209R [23] provides a 

lower and upper-bound value for the coefficient of thermal expansion and contraction 

(a-coefficient) of 4.7 x 10-5 in./in./°F (8.5 x 10·6 mm/mml°C) and 6.5 x 10·6 in./in.!°F 

(11. 7 x 10·5 mm/mml°C), respectively. These a-coefficients can be used to estimate a 

range of longitudinal thermal movement for highways and bridges. Also, ACI 209R 

provides an empirical equation to determine an a-coefficient that is based on the 
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environmental conditions for exposed concrete and for the characteristics of the total 

aggregate. 

Researchers at CTL [8] recommended design values for the a-coefficient of 

concrete equal to 6.0 x 10-6 in./in./°F (10.8 mm/mml°C) in the absence of more 

precise information. This magnitude for the a-coefficient was conservative. The 

researchers at CTL experimentally determined an average a-coefficient for concrete 

equal to 4.9 x 10-6 in./in./°F (8.8 mm/mml°C). 

Methods developed by Emanual and Hulsey [24] may be used to determine 

an accurate value for the a-coefficient of concrete when the concrete mixture 

information is available. Their approach incorporates the characteristics of the 

aggregates, the concrete-mix proportions, moisture content, temperature, and age of 

the cured concrete. 

2.4.2 Bridge displacement 

Researchers at CTL determined that free expansion of a bridge 

superstructure provides a reasonable estimation of the thermal expansion for a 

bridge. Abutment and pier restraints against longitudinal displacement of a bridge 

superstructure have a negligible effect on the change in bridge length due to thermal 

expansion. The PC-girder, integral-abutment bridge monitored by Lawver [13] had a 

thermal expansion equal to about 96% of the theoretical elongation of an 

unrestrained structure. 

Abutment movements that are transverse to the bridge length need to be 

considered in the design of integral-abutment bridges. The skew angle of a bridge, 

abutment wingwalls, and length-to-width ratio of the bridge affect the magnitudes of 
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transverse movements of the abutments. Based on the typical soil-friction angles of 

a granular backfill, researchers at CTL noted that special transverse movement 

provisions for an abutment could be neglected when the bridge skew angle does not 

exceed 20°. Transverse movement of an abutment can occur when the friction 

angle for the abutment backfill is exceeded. CTL presented a design chart for 

determining the magnitude of transverse movement of an abutment that is based on 

the skew angle for a bridge, length of the bridge, and bridge length-to-width ratio. 

Thermal expansion of the abutment was included by CTL after using the design 

chart to determine the transverse abutment movement. This expansion induces 

displacements along the width of an abutment with respect to the longitudinal 

centerline of the bridge [8]. 

2.4.3 Abutment backfill 

Springman, Norrish, and Ng [25] provided recommendations for the design of 

integral-abutments. These researchers recommended that a medium-dense to 

dense, granular backfill be used behind the abutments. A lower stiffness backfill 

was not recommended, since the cyclical movements of the abutment over time will 

compact the backfill material. If a loose backfill was used, settlement problems 

would occur for the approach slab. The grain size of the granular material should be 

in the sand-to-gravel range. A backfill containing silt may cause capillary action for 

the water in the backfill, which would increase the effective stresses in the soil and 

increase the ultimate passive force on the abutment. The length of the soil 

settlement region behind an abutment was expected to be about 60% of the 

abutment wall height. 
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CTL [8] stated that high compaction of the backfill soil behind the abutment 

does not seem to be advantageous, since voids will still occur in the soil. CTL noted 

that the passive-soil pressure is lower for a loose backfill compared to that for a 

dense backfill. CTL recommended the use of a well-graded, granular soil with 

approximately 90% relative compaction, which approximately represents the 

medium-dense condition as defined by Clough and Duncan [14]. 
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3 EXPERIMENTAL MONITORING PROGRAM 

3.1 Overview 

This section provides a brief overview of the experimental monitoring program 

used in this project. A more detailed discussion of the characteristics of the 

instrumented bridges and the experimental monitoring program is provided in 

Appendix A. 

3.1. 1 Bridge descriptions 

Two, in-service, integral-abutment bridges that have steel, HP-shaped piles 

and PC girders were experimentally monitored in this project. The first bridge, 

referred to in this thesis as the Guthrie County Bridge, is on Route P28 where the 

highway crosses the Middle Raccoon River in Guthrie County near the town of 

Panora, Iowa. The installation of the instrumentation at the Guthrie County Bridge 

was completed in December of 1997. The second bridge, referred to in this thesis 

as the Story County Bridge, is on Route E26 where this highway crosses over 

Squaw Creek in Story County, just northwest of the City of Ames, Iowa. The 

installation of the instrumentation was completed at the Story County Bridge in 

August of 1998. 

The Guthrie County Bridge is a three-span, integral-abutment bridge with a 

skew angle of 30°. A summary of the geometric characteristics of the Guthrie 

County Bridge is provided in Table 3.1. The abutments are supported on piles in a 

LI-shaped arrangement, with a single row of ten, HP1 Ox42, steel piles under the 

backwall and an HP10x42 pile under each wingwall. In the abutment backwall, the 
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Table 3.1. Characteristics of the instrumented bridges (26] 

Total bridge length 

Spans 

Skew 

Abutment pile arrangement 

# of piles per abutment 

Bridge orientation 

PC girders (number/type) 

Pier type 

Bridge width 

GUTHRIE COUNTY 
BRIDGE 

318 ft. - 0 in. (96.9 m) 

105.75, 106.5, 105.75 ft. 
(32.2, 32.5, 32.2 m) 

30° 

LI-shaped 

12 

North-south 

5 girders, Iowa D 

Tee pier 

30 ft. (9.1 m) 

STORY COUNTY 
BRIDGE 

201 ft. - 4 in. (61.4 m) 

64.08, 73.17, 64.08 ft 
(19.5, 22.3, 19.5 m) 

15° 

Single row 

7 

East-west 

5 girders, Iowa C 

Pedestal pier 

30 ft. (9.1 m) 

piles are oriented with their webs parallel to the abutment face. The piles in the 

wingwalls are oriented with their webs perpendicular to the roadway. Prebored 

holes that were filled with a bentonite slurry were specified for the abutment piles at 

this bridge. The two, Tee-shaped piers are supported by a reinforced concrete (RC) 

footing keyed into shale bedrock. The bridge geometry is symmetrical, except for at 

the connection of the bridge superstructure to the piers. An expansion pier was 

specified at the south pier. At the expansion pier, the PC girders rest on 3.75 in.(95 

mm)-thick, steel-reinforced, neoprene pads and the RC diaphragm cast between the 

girders does not extend down to the top of the pier cap. A fixed pier was specified 

at the north pier. The RC diaphragm at the fixed pier was cast into a keyway that 

was lined with expansion-joint filler. The PC girders are supported by thinner, 1 in. 

(25 mm)-thick, neoprene pads at this pier. 
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The Story County Bridge is a three-span, integral-abutment bridge with a 

skew angle of 15°. The characteristics of the Story County Bridge are provided in 

Table 3.1. Each abutment is supported on seven, HP10x42, steel piles, oriented 

with their webs parallel to the abutment face. The wingwalls are cantilevered 

straight back from the backwall, parallel to the roadway centerline. The wingwalls in 

this bridge are not supported on piles. The piers at this bridge are pedestal-type 

piers supported by twelve, HP1 Ox42, steel piles. A fixed detail between the bridge 

superstructure and the pier cap was specified at both piers. 

3. 1.2 Instrumentation packages 

Instrumentation packages were developed to measure the seasonal thermal 

effects on the selected integral-abutment bridges [26]. String-potentiometer, 

displacement transducers were used to measure abutment displacements in the 

longitudinal and transverse directions of the bridges, relative displacements of the 

bridge superstructure over the piers, relative rotations between an abutment pile cap 

and a pile, and the relative rotation between a PC girder and an abutment backwall. 

At one abutment for each of the monitored bridges, a tiltmeter was installed to 

measure the abutment rotation in the vertical plane parallel to the longitudinal axis of 

the bridge. Weldable, electrical-resistance, strain gages were applied to selected 

steel, HP-shaped, abutment piles at each bridge to measure longitudinal strains in 

these piles. Electrical-resistance, strain gages were used at the Guthrie County 

Bridge to measure the strain gradient through the depth of the PC girders. Vibrating

wire strain gages were installed at the Story County Bridge to measure these PC 

girder strains. Thermocouples were embedded in various bridge members to 
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establish temperature distributions in the monitored bridges. Thermocouples were 

also installed near the strain gages and displacement transducers to correct for the 

temperature induced errors in the gages. A data-acquisition system was installed at 

each bridge to record data for each instrumentation device at selected time intervals. 

Table 3.2 provides a list of the measurements made during the experimental 

monitoring program at the Guthrie County Bridge and Story County Bridge. Table 

3.3 shows the number of each type of instrumentation device that was used at the 

monitored bridges. 

Table 3.2. Experimental measurements at the monitored bridges [26] 

MEASUREMENT GUTRIE COUNTY STORY COUNTY 
BRIDGE BRIDGE 

Longitudinal abutment 
Each abutment Each abutment displacements 

Transverse abutment 
One abutment One abutment displacements 

Strains in steel piling Five piles Four piles 
PC girder strains Eight locations Six locations 
Displacements of a pile relative 

One pile location One pile location to RC pile cap 

Vertical temperature gradient 
12 locations 14 locations through superstructure 

Relative displacements of bridge 
Each pier Each pier superstructure over piers 

Concrete strains in pile cap One abutment One abutment 
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Table 3.3. Number of instrumentation devices installed for field monitoring [26] 

INSTRUMENT TYPE 
NUMBER OF INSTRUMENTS INSTALLED AT THE: 

Guthrie County Bridge Story County Bridge 
Displacement transducers 16 11 
Tiltmeters 1 1 
Strain gages on piles 40 31 
Strain gages on PC 

16 12 girders 

Strain gages on pile cap 5 4 
Thermocouples 43 46 
Total 121 105 

3.2 Instrument temperature corrections 

Since the instrumentation devices were subjected to the same temperatures 

as the bridges, temperature corrections had to be made for some of the 

displacement and strain data. The strain measurements made with the electrical-

resistance strain gages were more sensitive to temperature-induced errors than 

theother instrumentation devices. This section will describe the basic concepts 

involved in the corrections applied to the strain and displacement data. 

Thermocouples were installed near the instrumentation devices to provide a 

temperature of the instrument at the time that measurements were made. The 

temperatures of the displacement transducer extension wires were measured with 

thermocouples placed near the mid-length of the wire in each of the wooden box 

enclosures. The temperature of the vibrating-wire strain gages was measured with a 

thermistor that was built into each strain gage. The temperatures of the electrical-

resistance strain gages applied to the steel piles at both bridges were measured with 
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thermocouples mounted to each pile surface with adhesive. The temperatures of 

the electrical-resistance strain gages bonded to concrete at the Guthrie County 

Bridge were measured by the thermocouples embedded in the PC girders near 

strain gage. 

3. 2. 1 Corrections for displacement transducer 

Laboratory tests [27] of a displacement transducer showed that these devices 

were insensitive to temperature changes. However, the extension wire that linked 

the displacement transducer wire to the bridge experienced a change in its length, 

Lwire. when the temperature changed. The length of some of these extension wires 

was large enough (108 to 120 in., or 2700 to 3000 mm) that the change in length of 

the wire due to temperature changes would affect the magnitude of the displacement 

measurements. The change in length, lilwire. of an extension wire due to a change 

in temperature, l> T wire. of the wire is: 

(3.1) 

The a-coefficient of the wire, CXwire. was 6.33 x 10"6 in./in./°F (11.4 x 10"6 mm/mml°C), 

as specified by the manufacturer. This change in the wire length was added to the 

raw displacement transducer measurement to obtain the correct displacement 

magnitude. 
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3.2.2 Corrections for compensated resistance strain gages 

The change in strain, LlE, is defined as the change in length, til, of a 

specimen divided by its original length, L. Changes in length are, amongst other 

factors, due to imposed stress, tia, and due to temperature change, ti T. The 

resulting change in total strain, LlE101a1. is: 

"' 
ti L 

(3.2) & lo/al = 
L 

"' £ /Olaf = "' & .{/re.u + "' & lemp (3.3) 

"' "' () 
a ti T (3.4) & 1010/ = + 

E 

in which a is the a-coefficient and E is the modulus of elasticity of the specimen. 

Strain is experimentally determined by measuring the change in resistance of 

the strain gage. To obtain the change in strain due to stress, LlEstress. from the 

electrical-resistance strain gages, two temperature corrections are involved: (1) 

adjusting for apparent strain as described in manufacturer project literature [28], and 

(2) adjusting the output for a thermally induced Wheatstone-bridge completion error. 

The first correction is necessary because the change in temperature effects 

the gage-grid elongation, base-material elongation, and the resistivity of the gage 

material. The temperature-induced resistance change, (tiR/R)H, due to these 

effects is: 
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( t:,. R ) = (a , - a , ) S , !:!l T + rt:,. T (3.5) 
R 6 T 

where as and a 9 are the coefficients of thermal expansion for the specimen and 

gage, respectively, S9 is the gage factor, and y is the temperature coefficient of 

resistivity of the gage material [29]. 

Temperature-compensated electrical-resistance strain gages were used for 

measuring strain due to stress on the steel piles. Temperature-compensated gages 

were selected so that the temperature-induced resistance change in Equation 3.5 

was minimized. Over a wide temperature range, the gages are not perfectly 

compensated because of the nonlinear responses of the resistivity coefficient and 

expansion coefficients [29]. This resulted in a temperature-induced strain that is not 

caused by stress in the specimen, called an apparent strain [28]. 

The apparent strain induced by the change in gage material properties over a 

wide range in temperatures was adjusted using a fourth-order polynomial correction 

provided by the manufacturer. The resulting strain, !:!lE', measured by the gage after 

compensation for the apparent strain is: 

(3.6) 

where !:!lE was the uncorrected reading of the gage and /',.Eapp was the polynomial 

correction for apparent strain. 
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The second correction occurs because the electrical-resistance strain gages 

for this project were multiplexed into a Wheatstone quarter-bridge circuit. The 

Wheatstone-bridge completion resistor within the data acquisition system created a 

temperature-induced source of error. The resistance of this resistor, which was 

opposite the strain gage in the quarter-bridge circuit, changed with changes in 

temperature. To correct this error, a dummy, electrical-resistance, strain gage was 

attached to an unrestrained steel bar located in the box containing the datalogger. 

After correcting for the nonlinear thermal response of the dummy gage using 

Equation 3.6, with t.s' equal to t.s'dummy. the strain reading for this unrestrained steel 

bar should be equal to zero, since the bar was free of stress. Since t.s' dummy was not 

equal to zero, the corrected dummy gage reading represents the Wheatstone-bridge 

completion error. 

In summary, the uncorrected strain gage output recorded by the data 

acquisition system, i'.sm, was corrected for the Wheatstone-bridge completion error 

by: 

(3.7) 

The gage was then compensated for its apparent strain by Equation 3.6 to obtain the 

final compensated change in strain due to stress, i'.Estress: 

LiE ~ = LiE: stress = LiE ~ - LiE app (3.8) 
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3.2.3 Corrections for uncompensated resistance strain gages 

Temperature-compensated, resistance gages were not used for PC girders at 

the Guthrie County Bridge. The girder strain gages have an a-coefficient equal to 

that of mild steel (6.5 x 10-5 in./in./°F, or 11. 7 x 10-5 mm/mm/°C). 

To illustrate the strains obtained from the uncompensated gages, the simple 

example of an unrestrained bar is used. A temperature increase in the bar will result 

in a total strain equal to aspecimeni'lTspecimen· Strain due to stress, i'lEstress. is zero for 

the unrestrained bar. However, because of the difference in expansion coefficients, 

the strain gage will have a non-zero strain reading: 

LiE ~ = LiE stress - Li Tspecimen (a gage - a specimen ) (3.9) 

The temperature term in Equation 3.9 was eliminated in the temperature 

compensated gages since agage equaled aspecimen· It should be noted that the gage 

strain reading in Equation 3.9, i'lE~, is the corrected value after accounting for 

apparent strain and Wheatstone-bridge completion errors in Equation 3.8. 

Rearranging Equation 3.9 to solve for strain in the specimen due to stress: 

Lie stress = Lie~ + Li Tspecimen (a 9a9e - a specimen ) = 0 (3.10) 

Substituting Equation 3.10 into Equation 3.3, the total strain in the unrestrained bar 

is: 
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LlE total = [ LlE ~ + D. T specimen (a gage - a specimen ) ] + a specimen D. T specimen ( 3. 11 ) 

which simplifies to: 

(3.12) 

The changes in the PC girder strains reported in Chapter 4 are in the form of 

this "total-strain", which includes strains due to stress and the contraction or 

expansion of the girder due to temperature. The analytical model results in 

Chapters 6 and 7 will compute strains due to stress in the PC girders. 

3.2.4 Corrections for vibrating-wire strain gages 

The temperature correction for the vibrating-wire strain gages is similar to the 

temperature correction applied to the uncompensated, resistance strain gages. A 

vibrating-wire gage measures the change in strain in the specimen by measuring the 

change in the natural frequency of a vibrating wire that is stretched between two 

mounting blocks. If the vibrating-wire gage is subject to temperature changes, the 

wire length and, hence, the natural vibration frequency of the wire changes without, 

necessarily, an associated expansion or contraction between the gage mounting 

blocks. Similar to Equation 3.12, the total strain at the location of the vibrating-wire 

gage is: 
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(3.13) 

The expansion coefficient, avibr. for the vibrating wire in the gage was 7 .2 x 1 o-6 

in./in./°F (13.0 x 1 o·6 mm/mm/°C), as provided by the gage manufacturer. The gage 

strain reading in Equation 3.9, Iii:~, is the corrected value after accounting for 

Wheatstone-bridge completion error in Equation 3.7. 

3. 2. 5 Corrections for tiltmeters 

The temperature corrections for the tiltmeters installed on the abutment walls 

at the Guthrie County Bridge and the Story County Bridge were described by 

Thomas (26]: 

"Temperature corrections for the tiltmeters were made according to literature 

provided by the tiltmeter manufacture, Applied Geomechanics, Inc. Temperature 

variations can affect the output of an electrolytic tiltmeter by affecting the zero value 

of the tiltmeter and the scale factor, which relates measured voltage to an angular 

rotation magnitude. The tiltmeters were, to some degree, temperature-compensated 

by their internal circuitry. However, increased accuracy was obtained by using the 

results of temperature tests that were conducted by the manufacturer. Two 

temperature coefficients were provided by the manufacturer for each tiltmeter and 

the corrections were made according to an article supplied by the tiltmeter supplier." 
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4 EXPERIMENTAL RESULTS 

This chapter contains a summary of the experimental results obtained from 

the Guthrie County Bridge and the Story County Bridge. Supplementary 

commentary for the results presented in this chapter is provided in Appendix B. 

4.1 Experimental data filtering 

The Guthrie County Bridge was monitored from December 17, 1997 until April 

1, 2000. The Story County Bridge was monitored from July 12, 1998 to April 1, 

2000, but the filtering process for this bridge had only been completed through July 

12, 1999 at the completion of this report. 

With the massive amount of data accumulated, gages were expected to 

occasionally produce outlying data points. The initial data reduction process, as 

discussed in Appendix A, eliminated many of these data points. Gages were also 

expected to exhibit unreliable data or completely fail over the monitoring period due 

to a variety of problems. Problems encountered include water infiltration damaging 

the gage connection to the bridge element, moisture accumulating in the wire 

splices, or gage failure. Erroneous data was identified and corrected or eliminated 

before final experimental results were presented in this report. 

4. 1. 1 Thermocouples 

Since thermocouples measure absolute temperatures, the raw data was 

presented without modifications. Each thermocouple reading was plotted versus 

time to determine if it was functioning properly. Jumps and drifting of the 

thermocouple data were not encountered. Thermocouples were either working and 
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producing reliable temperatures, which followed an expected pattern of the concrete 

temperature over time, or were not working and producing temperature readings 

outside of the expected range. Temperatures that were obviously incorrect were 

discarded. A thermocouple (Guthrie TC-E-1 SC-S) with reliable data over the entire 

monitoring period is shown in Figure 4.1 (a). The maximum temperature range 

measured by the example thermocouple is shown to the right of the plot. In the case 

where the gage is considered reliable over the entire time period, the range is the 

difference between the maximum and minimum values of the gage. When a 

thermocouple failed during the monitoring period, the experimental temperature 

range was determined from the overall maximum and minimum reliable readings. 

Figure 4.1 (b) shows a thermocouple (Guthrie TC-E-1 SW-S) with time periods of 

unreliable data and the accepted temperature range for the gage. 

Tables 4.1 and 4.2 provide a summary of the times that each thermocouple 

was functioning properly for the Guthrie County Bridge and Story County Bridges, 

respectively. 

4.1.2 Displacement transducers 

Data from each of the displacement transducers were plotted versus time to 

determine if the gages were functioning properly. The displacement plots were 

compared with the average bridge temperature to verify that the recorded 

displacement correlated with temperature change. Faulty displacement 

measurements included sudden jumps in a displacement or the drifting of a 

displacement over time. Data was considered reliable after a displacement jump if 

the displacements regain correlation with temperature. However, a new temperature 
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(a) Reliable thermocouple (Guthrie TC-E-1SC-S) 
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(b) Thermocouple with errors (Guthrie TC-E-1SW-S) 

Figure 4.1. Typical thermocouple plots 
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Table 4.1. Summa of reliable thermocou le data for the Guthrie Count 
LOCATION 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

Group 6 

Group 7 

Group 8 

NearDCDTs 

Various girder 
locations 

Piles 

LEGEND: Shaded areas indicate thermocouple data were reliable for the month 
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Table 4.2. Summary of reliab e thermocouple data for the Story County BridQe 
LOCATION 

1998 1999 2000 
INSTRUMENT CODE J F M A M .l .I A s o N D .l F M A M J .1 A S n N D J F M 

TC-E-1 i:r..s . . '"'·~~~$ ~"~1''11.*"'4*.r~~f!ffi 

Group 1 

Group 2 

Group 3 

TC-E-1MSNl-B .. ~.. , "" ti~~~~~ 
TC-E-1MC::r.C::-SN P'.~f.c~~~.«H¥~ l~~o;.<:-;.~~~~ 
TC-E-1 MC::r.<::. T 

Group 4 TC-E-1 M<:r.:::.w b~": ~ '" ~ "'"'} 1~i)l~;:'t,M~~-
TC-E-1 MC::r.<::.B · . •, ... .,.. ~ 

Group 5 

Group 6 

Tr.-E-1wr.-s ~'l!b~~~·~.il$ ~~~Ji~r(~?.l 
TC-E-1WC-T ~~~~~'l:,~~ ~Q;~~·'!:i>.#J'-:=. , Group 7 
Tr.-E-1wr.-w ~~~~~w-~ ~~·¥1$~:!·~~l'i~t:f,.;&.1 
TC-E-1WC-B 1(11-,. . &i~~ ~~~/;f.~~~~:;w 

Groups 
TC-E-2M<::r..w ~~..-.e't~~~~,~ ~~liJ:>~·~..f.;:~~~ilJ 
TC-E-?M<::r..9 _., " <>~~ ~&'\':.»· • .~... ;t<~,4 

Group 9 

TC-E-1 -EN·B 
TC-F-1M<::r<::.<::<:: ~;;)'..'~"Ui&~~<;;"' "'~w 'i..~:.t.~~~ 
TC-1=-1ucrc.cr ~·/''r,m."-'t.lm~~~ ~''l.U~·~·'-\. M 

TC-E-1ES-T 1~":~~~~~'1,~,~ i~~.!lt:t;?· ro~E~~.~ 

Tr.-E-1WS-T ~~..:;+~~);'\-'!<·~.~it' ~i~·~'-*'<:1\~:~~~}•l 
Tr.-F-1WS-R ~~f.,)~~;{~.fi,~~~ '~~~~-~~ 

LEGEND: Shaded areas indicate thermocouple data were reliable for the month 
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cycle for that displacement was started since the absolute displacement was not 

continuous across a displacement jump. Displacements continuously increasing or 

decreasing with time and not correlating with changes in temperature indicated a 

displacement drift. Drift may be a sign of a broken transducer or a moving 

benchmark post. Measurements from drifting displacement transducers are not 

considered reliable. 

Figure 4.2(a) shows a plot of displacement versus temperature from a 

displacement transducer (Guthrie SP-SC-LB) with reliable data over the entire 

monitoring period. Figure 4.2(b) shows a plot of a displacement transducer (Guthrie 

SP-SE-LB) with an apparent jump in the displacement that occurred on July 5, 1999. 

The experimental displacement range was determined from a time period over which 

the gage was continuously producing reliable data. In the case of a distinct jump in 

a displacement, the range can be determined from the maximum and minimum 

displacement in the time period before the jump and after the jump, as shown by the 

bars in Figure 4.2(b). The displacement transducer (Guthrie SP-SE-LB) data shown 

in Figure 4.2(b) also indicated a possible drift, since the displacement in the second 

yearly cycle (1999) did not return to the level of the previous yearly cycle (1998). 

The displacement data is inconclusive whether there was drifting in the gage, or if 

the side of the abutment at the obtuse angle of the bridge deck is displacing over 

time towards the river. 

Tables 4.3 and 4.4 provide a summary of the times that reliable data was 

obtained from each displacement transducer for the Guthrie County Bridge and 

Story County Bridge, respectively. 
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(b) Displacement transducer with error (Guthrie SP-SE-LB) 

Figure 4.2. Typical displacement transducer plots 
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Table 4.3. Summary of reliable displacement transducer data for the Guthrie County 
Brid e 

DISPLACEMENT 

Longitudinal 
abutment 

displacement 

Transverse 
abutment 

Relative girder 

Relative pile 

Relative pier 

Ab t. rotation 

SP·SC-RGT 
SP-SC-RPS 
SP·SC-RPF 
SP-SP-RPL 

P-NP-RPL 
TM-SC· LR 

LEGEND: Shaded areas indicate displacement transducer data were reliable for the month 

Table 4.4. Summary of reliable displacement transducer data for the Story County 
Brid e 

DISPLACEMENT INSTRUMENT CODE 
J F M A M 

1999 2000 
J J A S 0 N D J F M 

SP-EN-L 
Longitudinal SP·EC-L 

abutment SP-ES-L 
SP·WC-L 

Transverse P-E ·T 
m nt SP-EN-T 

Relative pile P-EC-RPB 
SP-EC-RPF 

Relative pier P- P-L 
SP-WP-L 

Ab . Rotation TM-SC-LR 

LEGEND: Shaded areas indicate displacement transducer data were reliable for the month 
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4.1.3 Pile strain gages 

Pile strain gages required a more in-depth filtering process because the 

weldable, electrical-resistance strain gages had a higher rate of failure than the other 

instrumentation. The individual pile strain gage readings were plotted versus time 

and compared to the corresponding abutment displacement. Pile strain gage errors 

include strain jumps, drifting, and complete failure of the gages. Strain gage data 

was filtered by checking each gage individually and also by checking the bending, 

axial, and torsion strain components for each pile cross section. 

A field investigation to determine the cause of the gage failure at the Guthrie 

County Bridge was described by Thomas [26]: 

"A significant amount of reliable pile strain data was lost due to drifting of the 

strain gage readings. The drifting was most likely caused by moisture infiltration into 

the splice between a strain gage lead wire and the gage extension wire. These 

splices were protected with shrink-wrap tubing. Several of the lead-wire splices for 

the pile strain gages at the Guthrie County Bridge were examined on February 28, 

1999. Several wire splices were disconnected to reveal that moisture had in fact 

infiltrated the wire splices. The inside surface of the outer layer of the shrink-wrap 

tubing was wet when it was cut away. Also, the shrink-wrap tubing that was 

originally placed around each of the three strain gage conductors did not appear to 

have closed tightly around the conductor insulation. Several splices were 

rehabilitated by applying heat to dry the splice and by coating the splice with a 

waterproof caulk to prevent any future moisture infiltration." 
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The measured strains from the gages in the top cross section of the pile near the 

mid-width of the north abutment at the Guthrie County Bridge (Guthrie SG-NCP

svvr, SG-NCP-NVVf, SG-NCP-SET, SG-NCP-NET) are shown in Figure 4.3. Initial 

data reduction had been completed to eliminate data points outside of the limits as 

described in Appendix A. Figure 4.4 shows the same set of strain gages after the 

apparent strain and the Wheatstone-bridge completion errors were corrected, as 

described in Section 3.2.2. The dummy gage used to correct the Wheatstone-bridge 

completion error was installed in March 1998; therefore, individual strain gage 

results could not be obtained before this date. The Wheatstone-bridge error is most 

noticeable for gages with small strain ranges, such as the gage (Guthrie SG-NCP

NVVf) shown in Figure 4.4(b). Strain data obtained from the individual strain gages 

were visually checked for jumps and drifting. 

Smaller individual gage errors are difficult to isolate when plotted over long 

time periods. Investigating each gage over daily or weekly time periods is a time 

consuming process and is impractical when large amounts of data exist, so other 

methods were investigated to assess the reliability of the strain gage readings. The 

method used to detect less visible errors in individual strain gage readings was to 

plot average strain components (bending, axial, and torsion) over time. The strain 

components should correlate with the abutment displacement over seasonal cycles. 

At each pile cross section with applied strain gages, as shown in Figure 4.5, the 

longitudinal strain, E;, due to stress in the pile is a superposition of the axial strain, Ea, 

x-axis bending strain, Ex. y-axis bending strain, Ey, and normal warpage torsional 
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(a) Strain gage (SG-NCP-SWT) near the southwest flange tip 
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(b) Strain gage (SG-NCP-NWT) near the northwest flange tip 

Figure 4.3. Raw individual strain gage data for the top cross section of the pile near 
the mid-width of the north abutment at the Guthrie County Bridge 
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(c) Strain gage (SG-NCP-SET) near the southeast flange tip 
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(d) Strain gage (SG-NCP-NET) near the northeast flange tip 

Figure 4.3. (continued) 
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(a) Strain gage (SG-NCP-SWT) near the southwest flange tip 
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(b) Strain gage (SG-NCP-NWT) near the northwest flange tip 

Figure 4.4. Individual pile strain gage results for the top cross section of the pile 
near the mid-width of the north abutment at the Guthrie County Bridge 



www.manaraa.com

42 

1000 

BOO 

600 

400 

c 200 
'§ 
t; 
e 0 u 

I 
c ·200 "§ 
iii 

·400 

·600 

·BOO 

·1000 

D J F M A M J J A S 0 N D J F M A M J J A S 0 N D J F M A M J J 
199B 1999 2000 

(c) Strain gage (SG-NCP-SWT) near the southeast flange tip 
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(d) Strain gage (SG-NCP-NWT) near the northeast flange tip 

Figure 4.4. (continued) 
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Gage 2 

Gage 3 

:r Centerline of abutment 

Gage 1 

y 

1i+----•x 

HP 10x42 

Gage 4 

a = 1 in. typical (all monitored piles at both bridges), except 
1/2 in. at NW pile at the Guthrie County Bridge 

Figure 4.5. Typical strain gage locations on a HP1 Ox42 steel pile cross section 
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strains(e1). The strain relationships are given by Equation 4.1. The subscripts 1, 2, 

3, and 4 correspond to the strain gages 1, 2, 3, and 4, respectively, shown in Figure 

4.5. 

(4.1) 

With a properly functioning strain gage near each flange tip on an HP-shaped pile 

cross section, the range in pile strain components induced by axial force, x-axis 

bending, y-axis bending, and torsion can be determined from the following equations 

[30]: 

1'1sa = (1'1s1 +1'1s2 +1'1s3 +1'1s4)/4 

1'1s, =(1'1s1 -1'1s2 +1'1s3 -1'1s4)/4 

1'1sx = (1'1s1 +1'1s2 -1'1s3 -1'1s4)/4 

1'1s, = ( -1'1s, + 1'1s2 + 1'1s3 -1'1s 4 ) I 4 

(4.2) 

in which /'1e1, l'1E2, l'1E3, /'1e4 are the range in temperature corrected strains from 

Equation 3.8 for the four gages at a particular cross section. 
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As described in Section 3.2.2, the dummy gage correction was required for 

the calculation of axial strains since the Wheatstone-bridge completion error is 

additive. Hence, axial strain could not be computed for the Guthrie County Bridge 

piles before the dummy gage installation in March 1998 and after July 1999 when 

the dummy gage readings became unreliable. For the other three strain 

components, the Wheatstone-bridge completion error is eliminated when taking the 

difference in gages. These strain components could be computed at times when 

reliable individual strain gage data was available. 

Normal warpage torsional strains can be assumed to be near zero, as shown 

in Figure 4.6(a) for a cross section with four reliable strain gages. The ANSYS, 

finite-element models also verified that these torsional strains are negligible. With a 

near zero daily and seasonal variation in the normal warpage torsional strains, strain 

jumps for individual gages could easily be identified. Axial strains also had low daily 

and seasonal variations, and were used as a second check for the reliability of the 

gages in the cross section. Examination of Figure 4.6(b) shows a jump in an axial 

strain at the Guthrie County Bridge in July of 1998. A similar jump in axial strain 

occurred for every set of pile strain gages at the Guthrie County Bridge. Individual 

strain gage and axial strain components were considered unreliable for the time 

period containing the jump in strain. The strain jump error was eliminated when 

computing the bending and torsional strains in Equation 4.2 since the error equally 

affected each gage. 

When other jumps or drifting of the strain component plots were noticed, 

individual strain gages were investigated more thoroughly. Using the assumption 
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DJ FM AM J J AS 0 ND J FM AM J J AS 0 ND J FM AM J J 
1998 1999 2000 

Before installation 
of dummy gage 

(a) Normal warpage torsional strain 

Jump in axial strain 

I 

DJ FMAMJ JASONDJ FMAMJ JASONDJ FMAMJ J 
1998 1999 2000 

(b) Axial strain 

Figure 4.6. Pile strain components calculated using all four strain gages at the top 
cross section of the pile near the mid-width of the north abutment at the 
Guthrie County Bridge 
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(c) X-axis bending strain 
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(d) Y-axis bending strain 

Figure 4.6. (continued) 
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that the torsional strains were negligible, a specific combination of two gages in a 

cross section could be used to determine axial, x-axis, or y-axis bending. When only 

two or three gages function properly, strain component ranges can be calculated as 

follows: 

!'>.ea =(!'>.e1 +t...e,)12 or (!'>.e, +!'>.e4 )12 

!'>.ex= (!'>.e 1 -!'>.e4 )12 or (t...e, -!'>.e3 )12 

t...e,. = (!'>.e, -t...e1)12 or (!'>.e 3 -!'>.e4 )12 

(4.3) 

The strain components evaluated by Equation 4.3 were compared with the 

plots of longitudinal abutment displacement versus time. If the strain component 

correlated well with the abutment displacement nearest to the gages, the gages 

were considered reliable. If the strain component did not correlate well with 

displacement, at least one of the two gages contained an error. The two-gage 

combinations were used to determine which gage or gages were causing errors in 

the strain component calculations at the particular cross section. Each of the 

corresponding strain components was computed using two orfour reliable strain 

gages in the cross section, whichever was available. 

Individual strain gage plots and corresponding strain component plots after 

the filtering process for the same pile cross section, as discussed above, are shown 

in Figures 4.7 and 4.8, respectively. The reported range for each of the strain 

components was determined from the time period with the largest strain range in an 
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(a) Strain gage (SG-NCP-SWT) near the southwest flange tip 
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(b) Strain gage (SG-NCP-NWT) near the northwest flange 

Figure 4.7. Final results for the strain gages on the top cross section of the pile near 
the mid-width of the north abutment at the Guthrie County Bridge after 
completion of the filtering process 
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(c) Strain gage (SG-NCP-SET) near the southeast flange tip 

1000 

800 

600 

400 

c 200 
'§ 
o; 
e 0 .0 
.s 
c -200 ·e 
iii 

-400 

-600 

-800 

-1000 

DJ FM AM J J AS 0 ND J FM AM J J AS 0 ND J FM AM J J 
1998 1999 2000 

(d) Strain gage (SG-NCP-NET) near the northeast flange tip 

Figure 4.7. (continued) 
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DJ FMAMJ JASONDJ FMAMJJ ASONDJ FMAMJJ 
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(a) Normal warpage torsional strain 

I~""'" ·'I<'·~ 
Data at strain jump eliminated 

Axial strain 
range= 95µ£ 

Ill 
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(b) Axial strain 

Figure 4.8. Final strain components after the filtering process for the top cross 
section of the pile near the mid-width of the north abutment at the 
Guthrie County Bridge 
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(c) X-axis bending strain 

y-axis bending strain 
range = 619µ£ 
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(d) Y-axis bending strain 

Figure 4.8. (continued) 
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uninterrupted data set. The reported ranges tor the strain components are shown as 

a bar on the plots in Figure 4.8. The maximum range of the normal warpage 

torsional strain was considered negligible and was not shown in Figure 4.8(a). 

Tables 4.5 and 4.6 provide a summary of reliable pile strain gages for the 

Guthrie County Bridge and Story County Bridge, respectively. The dummy gage at 

the Guthrie County Bridge failed in June 1999, making the individual strain gage 

readings incorrect after the failure. As discussed before, the bending and torsion 

pile strains can still be evaluated after the dummy gage failure since the bridge 

completion error is eliminated using Equation 4.2. Summaries of reliable strain 

component data available at each pile cross section are shown in Tables 4.7 and 4.8 

for the Guthrie County Bridge and Story County Bridge, respectively. 

4.1.4 Girder strain gages 

The same process as that used to filter pile strain data was used for the girder 

strain gages. Only two gages were installed at each girder cross section. Assuming 

torsion was negligible, the change in x-axis, total-strain (strain in the girder due to 

stress and temperature) gradient measured between the two strain gages on the 

girder flanges is determined by: 

ll.e x = fl£ top - Dae bottom (4.4) 

If one of the gages fails, the change in the x-axis, total-strain (strain in the girder due 

to stress and temperature) gradient can not be computed. 

The time periods containing reliable girder strain gage data and the 
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Table 4.5. Summa of reliable 
PILE INSTRUMENT CODE 1998 1999 2000 

J F M A M J J A S 0 N D J F M A M J J A S 0 N D J F M 

LEGEND: Shaded areas indicate strain qaqe data were reliable for the month 
Dashed lines indicate start and end time of reliable dummy gage data 
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Table 4.6. Summa 
PILE 

East abutment: 
North pile 

East abutment: 
Center pile 

East abutment: 
South pile 

INSTRUMENT CODE 

ENP ET 
ENPSWT 
ENPNET 

WCPNWB 

2000 
ASONDJFM 

LEGEND: Shaded areas indicate strain qaqe data were reliable for the month 
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Table 4.7. Summary of reliable pile strain component data for the Guthrie County 
Brid e 

1998 1999 2000 
PILE M J J A S 0 N D J F M 

North abutment: 
Center pile 

LEGEND: Ill Four reliable strain gages in cross-section 

• Four reliable strain gages. before dummy gage 

• Two reliable strain gages in cross-section 

Dashed lines indicate start and end time of reliable dummy gage data 
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Table 4.8. Summary of reliable pile strain component data for the Story County 

PILE 

East abutment: 
North pile 

East abutment: 
Center pile 

East abutment: 
South pile 

Brid e 
STRAIN 

Y -bendin : Bot 
Torsion : Bot 

LEGEND: 

1998 
JFMAMJJ 

Four reliable strain gages in the cross-section 

.Two reliable strain gages in the cross-section 

ASONDJFM 
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corresponding reliable x-axis, total-strain gradients are shown in Table 4.9 and 4.10. 

The strain jump detected in the pile strain gages at the Guthrie County Bridge in July 

1998 also occurred in the girder strain gages. The strain jump equally affected all 

girder strain gages; therefore, the error was eliminated in Equation 4.4. 

4.2 Bridge temperatures 

Temperatures measured at the various locations on the bridge structures 

were used to compute an average bridge temperature and the thermal gradients in 

the bridge at specific times during the study period. This section describes the 

experimental results obtained for each bridge. 

4.2. 1 Average bridge tempera tu res 

Average temperatures of the bridge superstructures, which will be referred to 

as the "average bridge temperature" in this report, were computed at each time 

interval during the monitoring period. The average bridge temperature was the 

weighted average of the temperature values indicated by all of the thermocouples 

embedded in the bridge superstructure. Each thermocouple was assumed to provide 

a uniform temperature for a region in the cross section of the superstructure, as 

shown by the shaded areas in Figure 4.9. The cross section was divided into four 

regions: slab, top flange, web, and bottom flange. The average bridge temperature, 

Tave. was determined as: 

(4.5) 
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Table 4.9. Summary of reliable concrete strain gage data for the Guthrie County 
Bridge 

a Individual irder strain a es 
GIRDER INSTRUMENT CODE 

J F M 
2000 

J F M 

East 

Center 

West 

LEGEND: Shaded areas indicate girder strain gage data were reliable for the month 

b X-axis irder total-strain 
GIRDER 

SUPPORT 1999 2000 
J J A S 0 N D J F M 

East 

Center 

West 

LEGEND: Shaded areas indicate girder strain gage data were reliable for the month 
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Table 4.1 O. Summary of reliable concrete strain gage data for the Story County 
Bridge 

a Individual irder strain a es 
INSTRUMENT CODE 1998 GIRDER 

J F M A M J J A S 0 N D J 

North 1EN·T 
1EN·B 
1 ·T 
1EC·B 

Center 

3WC·T 
3WC-B 

South 
1ES-T 
1ES-B 

LEGEND: Shaded areas indicate the girder strain gage data were reliable for the month 

b X-axis irder total-strain radient 
GIRDER 

SUPPORT 1998 
LOCATION J F M A M J J A S 0 N D J 

North East abutmen 
East abutment 

Center Ea i r 
West ier 

West abutment 
South Eas butment 

LEGEND: Shaded areas indicate the girder strain gage data were reliable for the month 

2000 
F M 

2000 
F M 
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• 

Thermocouples 

Figure 4.9. Typical temperature regions (not to scale) 

where Ti was the temperature measured by a thermocouple in the selected region 

and Ai was area of that region. The average bridge temperatures versus time for the 

Guthrie County Bridge and the Story County Bridge are shown in Figure 4.10. 

At the Guthrie County Bridge, the maximum average bridge temperature of 

101°F (38°C) occurred in the early evening hours of July 20, 1998 and July 22, 

1999. The minimum, average, bridge temperature measured at the Guthrie County 

Bridge was -12°F (-24°C), which occurred before the sunrise on January 5, 1999. At 

the Story County Bridge, a maximum, average, bridge temperature of 104°F {40°C) 

occurred in the early evening hours of July 20, 1998. The minimum, average, bridge 

temperature of -10°F (-23°C) was measured before sunrise on January 5, 1999 at 

the Story County Bridge. The maximum ranges in average bridge temperatures for 

each monitored bridge are shown in Figure 4.10. The range in average bridge 

temperatures was 113°F (63°C) and 114 °F {63°C) for the Guthrie County Bridge and 

Story County Bridge, respectively. 
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Figure4.10. Average bridge temperature of the monitored bridges 
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The maximum, average, bridge temperatures exceeded the air temperatures 

measured at each bridge site. Figure 4.11 shows that for the Guthrie County Bridge, 

the average bridge temperature lagged behind and exceeded the measured air 

temperature. 

4.2.2 Vertical temperature gradients 

Significant temperature gradients were measured through the depth of each 

bridge superstructure. The largest positive thermal gradients occurred at the times 

of the maximum, average, bridge temperatures. Girton, et al. [7] determined that the 

vertical temperature distributions are bi-linear through the depth of a PC-girder 

bridge superstructure. The experimental temperature measurements at the Guthrie 

100 
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70 

• Average bridge temperature 20 
65 • Air temperature beneath the bridge 

60 

7/18/98 7/19/98 7/20/98 7/21/98 7/22/98 

Time 

Figure 4.11. Average superstructure and air temperatures at the Guthrie County 
Bridge between July 18, 1998 and July 22, 1998 [26] 
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and Story County Bridges were used to compute bi-linear temperature gradients 

through the depth of the superstructure at each monitored cross section. These bi

linear gradients were extrapolated to compute the temperatures to the top of the 

slab, top of the PC girder, and bottom of the PC girder. 

Tables 4.11 and 4.12 list the measured temperatures in the bridge 

superstructures at the time of the maximum and minimum average bridge 

temperatures, respectively, at the Guthrie County Bridge. In these tables, locations 

for thermocouples that did not provide reliable data or locations where a 

thermocouple was not installed are left blank. Tables 4.13 and 4.14 list the same 

temperature information for the Story County Bridge. Figure 4.12 shows the 

measured temperatures at all thermocouple locations in the superstructure of the 

Guthrie County Bridge and the Story County Bridge, respectively, at the time of the 

maximum and minimum, average, bridge temperatures. This figure also shows as 

solid lines the average, bi-linear temperature gradient for the respective bridge. 

Based on extrapolation of the average thermocouple values, the average, 

extrapolated temperature at the top of the concrete slab was 126°F (52°C) for the 

Guthrie County Bridge and 132°F (56°C) for the Story County Bridge. 

Figures 4.13(a), 4.13(b), and 4.13(c) show the extrapolated top-of-slab, top

of-girder, and bottom-of-girder temperatures, respectively, for the Guthrie and Story 

County Bridges at the time of the maximum and minimum, average, bridge 

temperatures. Figures 4.14(a), 4.14(b), and 4.14(c) show the same temperature 

information for the Story County Bridge. 
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Table 4.11. Temperature values at the Guthrie County Bridge at the time of the 
maximum averaae bridae temperature (Julv 20, 1998, 8:00 p.m.) 

MEASURED TEMPERATURES (°F) 
EXTRAPOLATED BILINEAR 

TEMPERATURES (°F) 

GAGE SLAB 
TOP WEB 

BO TI OM TOP OF TOP OF BOT.OF 
FLANGE FLANGE SLAB GIRDER GIRDER 

Averaae 109.8 96.7 93.4 91.8 126.3 96.5 91.1 
1MSE 109.1 97.0 96.1 93.6 123.7 97.4 93.4 
1MSW 108.7 98.2 96.5 93.3 121.2 98.7 93.0 

1SC 109.4 97.1 91.4 89.7 125.4 96.6 88.4 
1SE 105.3 93.3 90.5 87.9 120.2 93.4 87.3 
1SW 105.8 95.6 95.5 89.0 116.7 97.1 89.2 
3NC 110.6 96.4 91.5 89.6 128.8 96.1 88.5 

2MSC 113.9 99.7 92.7 92.2 132.9 98.7 90.5 
1MSC 115.3 93.3 92.8 138.4 96.8 90.2 
3SC 97.3 97.8 97.3 97.9 
1NW 95.3 
1NC 96.7 91.6 97.0 91.2 
1NE 92.6 

Table 4.12. Temperature values at the Guthrie County Bridge at the time of the 
m1n1mum average b"d (J 1999 4 ) n 1ge temperature anuary 5, 

' 
:OOa.m. 

MEASURED TEMPERATURES (°F) 
EXTRAPOLATED BILINEAR 

TEMPERATURES (°F) 

GAGE SLAB TOP WEB BO TI OM TOP OF TOP OF BOT.OF 
FLANGE FLANGE SLAB GIRDER GIRDER 

Averaae -12.2 -9.2 -11.8 -12.7 -15.6 -9.4 -13.3 
1MSE -14.3 -10.8 -14.8 -14.9 -18.0 -11.4 -15.8 
1MSW -13.7 -10.2 -13.2 -13.0 -17.5 -10.7 -13.8 

1SC -11.2 -8.1 -11.6 -15.3 -7.9 -11.8 
1SE -10.2 -7.0 -13.0 -13.0 -13.0 -7.9 -14.4 
1SW -9.6 -6.8 -11.8 -11.1 -11.9 -7.8 -12.3 
3NC -11.8 -7.7 -9.1 -10.6 -17.1 -7.6 -10.9 

2MSC -14.2 -10.9 -11.6 -12.6 -18.5 -10.8 -12.7 
1MSC 
3SC -11.8 -14.8 -11.7 -15.1 
1NW 
1NC 
1NE 
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Table 4.13. Temperature values at the Story County Bridge at the time of the 
maximum averaae bridae temoerature IJune 20, 1998, 6:00 o.m.) 

MEASURED TEMPERATURES (°F) 
EXTRAPOLATED BILINEAR 

TEMPERATURES (°F\ 

GAGE SLAB 
TOP 

WEB 
BO TI OM TOP OF TOP OF BOT. OF 

FLANGE FLANGE SLAB GIRDER GIRDER 
Averane 114.1 97.0 91.6 90.4 132.9 95.9 88.6 

1EN 
1EC 117.5 96.6 89.4 137.5 97.5 
1ES 94.3 85.5 94.7 85.5 

1MSNX 89.1 88.3 89.7 88.3 
1MSNI 115.4 95.3 88.0 86.6 136.5 94.3 86.6 
1MSC 112.8 89.6 88.6 135.2 90.4 88.6 
1MSSI 114.5 92.7 89.8 89.8 136.8 92.2 89.8 
1MSSX 95.7 91.2 92.0 100.8 90.6 92.0 

1WS 93.1 90.9 93.2 90.9 
1WC 119.0 97.6 91.3 89.4 141.1 96.9 89.4 
1WN 95.6 89.3 95.9 89.3 

2MSC 114.9 92.0 90.0 89.5 138.0 91.7 89.5 
3WC 117.8 98.2 96.6 86.9 135.6 100.0 86.9 
3EC 97.2 

Table 4.14. Temperature values at the Story County Bridge at the time of the 
minimum averaae bridae temperature (Januarv 5, 1999, 2:00 a.m.) 

MEASURED TEMPERATURES (°F) 
EXTRAPOLATED BILINEAR 

TEMPERATURES (°F) 

GAGE SLAB TOP 
WEB BO TI OM TOP OF TOP OF BOT. OF 

FLANGE FLANGE SLAB GIRDER GIRDER 
Averane ·11.3 ·8.9 ·9.4 ·10.7 -13.9 ·8.7 ·10.9 

1EN ·4.1 
1EC ·12.8 ·7.0 ·5.5 -7.6 ·19.3 ·6.3 ·7.2 
1ES ·0.8 ·6.1 -0.6 -6.8 

1MSNX -7.8 -12.9 -14.7 ·11.5 ·15.1 
1MSNI ·2.6 ·5.4 ·10.7 • 11.1 1.0 ·6.3 ·12.6 
1MSC ·13.9 ·6.9 ·8.8 ·22.5 ·5.4 ·9.2 
1MSSI ·10.0 ·14.5 -7.6 -8.0 -6.8 -13.2 -4.7 
1MSSX ·5.1 -9.7 -12.5 ·2.6 ·7.5 -13.1 

1WS ·6.6 -19.5 ·2.2 
1WC -12.4 ·6.1 ·4.8 -7.6 -19.6 -5.3 -7.3 
1WN ·3.9 -11.9 ·3.4 -14.8 

2MSC ·12.0 ·6.5 -10.4 -4.5 -19.4 -3.1 
3WC -11.9 ·6.3 -7.4 -17.6 ·6.2 -7.8 
3EC ·8.0 
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Figure 4.15(a) shows the difference between the average slab temperature 

and the average, PC-girder, bottom-flange temperature at the Guthrie County 

Bridge. Figure 4.15(b) shows the same temperature difference measured at the 

Story County Bridge. The magnitude of the vertical temperature gradient is much 

larger in the summer due to increased exposure of the bridge deck to solar radiation. 

4.2.3 Transverse temperature gradients 

Figure 4.16(a) shows the temperature variations across the width of the Story 

County Bridge for two hot days and two cold days. In Figure 4.16(a), positive 

distances from the bridge centerline are towards the north and negative distances 

are towards the south. Except for the slab temperatures near the edges of the 

bridge, the variation in the slab temperature across the width of the bridge was 

negligible. Near the edges of the bridge, the slab temperatures were measured 

beneath the continuous, Jersey-type, concrete barriers. These slab temperatures 

were significantly cooler than the rest of the slab at the time of the maximum, 

average, bridge temperature. The concrete barriers shade the slab suriace beneath 

them and provide a large thermal mass at these locations. 

A limited number of thermocouples were installed across the width of the 

Guthrie County Bridge. Figure 4.16(b) shows the temperature distribution across the 

width of the Guthrie County Bridge. Temperatures near the centerline of the bridge 

were slightly higher than those measured near the exterior girders, but the difference 

was not significant. Since an open-type of a reinforced-concrete guardrail was used 

at the Guthrie County Bridge, less thermal mass exists at the edges of this bridge. 

Since thermocouples were not placed in the slab directly beneath the open guardrail 
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and since the thermocouples were at about a 15-ft (4570-mm) transverse spacing, 

the researchers could not determine whether a temperature gradient existed across 

the width of the Guthrie County Bridge. 

4.2.4 Longitudinal temperature gradients 

Temperatures were measured at six locations along the longitudinal axis of 

each bridge. Figure 4.17 shows the temperatures measured through the depth of 

the superstructure at the selected cross sections along the length of the Guthrie 

County Bridge and Story County Bridge at the time of the maximum and minimum, 

average, bridge temperature. For a particular depth in the bridge superstructure, the 

differences in the measured temperatures along the bridge length are not significant. 

4. 2. 5 Pile temperatures 

The temperatures of several piles were measured near the bottom of an 

abutment pile cap at each bridge. At the time of the maximum, average, bridge 

temperature of 101°F (37°C), the average pile temperature was approximately 80°F 

(27°C) at the Guthrie County Bridge. At the time of the coldest average bridge 

temperature of -12°F (-24°C), the piles at this bridge had a temperature of about 

10°F (-12°C). Therefore, the pile temperature range was 70°F (39°C) at the Guthrie 

County Bridge. 

At the Story County Bridge, the pile temperatures were approximately 75°F 

(24°C) and 15°F (-9°C) at the time of the maximum and minimum, average, concrete 

temperatures of 104°F (40°C) and -10°F (-23°C), respectively. Only the top several 

inches of the piles were exposed to open air. For the Story County Bridge, the 

range in the pile temperature was 60°F (33°C). 

l 
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4.3 Bridge displacements 

This section describes the longitudinal abutment displacements, transverse 

abutment displacements, abutment rotations in a vertical plane that is parallel to the 

longitudinal axis of the bridge, and abutment rotations in a horizontal plane. 

Differential displacements between several bridge elements are also discussed. 

4.3. 1 Longitudinal abutment displacements and change in bridge length 

Figure 4.18 shows the change in bridge length between December 17, 1997 

and April 1, 2000 at the Guthrie County Bridge and between October 17, 1998 and 

July 12, 1999 at the Story County Bridge. The change in the bridge length was 

determined by summing the longitudinal abutment displacements measured at the 

mid-width of the abutment pile cap at each end of the bridge. Positive values for the 

change in Guthrie County bridge length indicate expansion of the bridge relative to 

the bridge length at 11 :20 p.m. on March 9, 1998, which coincided with the time of 

the first, dummy, strain-gage reading. The reference time for the Story County 

Bridge displacements was at 1 :30 a.m. on October 1, 1998. Positive values indicate 

expansion of the bridge superstructure with respect to this reference time. 

The recorded range for the change in Guthrie County Bridge length was 

1.767 in. (44.9 mm). The maximum change in average bridge temperature, and thus 

the maximum change in bridge length, occurred in the time period between July 20, 

1998 and January 5, 1999. The displacement transducer (SP-NC-LB) produced 

unreliable data in August of 1999 through October of 1999, but resumed producing 

some reliable data after November of 1999. At the Story County Bridge, the 

maximum 
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change in bridge length was 0.960 in. (24.4 mm), over the time period between 

January 5, 1999 and July 5, 1999. Each of the displacement transducers that were 

used to determine the change in the length of the Story County Bridge produced 

unreliable data in October of 1998. 

Figure 4.19 shows the change in bridge length versus average bridge 

temperature for the Guthrie County Bridge and Story County Bridge, respectively. 

The longitudinal displacement data correlated well with the recorded change in the 

average bridge temperature. 

The magnitudes of the longitudinal abutment displacements measured at 

each end of the Guthrie County Bridge were not equal. The longitudinal 

displacements measured at the north abutment were approximately twice as large 

as those measured at the south abutment. Except for the pier details, the bridge 

geometry is symmetric. (The pier details are discussed in detail in Section 5.1 and 

the relative movements of the bridge superstructure over the piers are discussed in 

Section 4.3.5.) The south pier is an expansion pier; therefore, the researchers 

assumed that the south abutment would displace further longitudinally than the north 

pier. The experimental longitudinal abutment displacements proved otherwise. 

Other factors, such as abutment backfill stiffness, may have caused the difference in 

abutment displacement. Factors affecting backfill stiffness include backfill slope, 

backfill compaction, and moisture content of the backfill [8]. 

The relationship between the longitudinal abutment displacements and the 

average concrete temperature at the Guthrie County Bridge is shown in Figure 4.20. 
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Nonlinear, longitudinal, abutment displacements were observed at the Guthrie 

County Bridge. The south abutment experienced a decrease in the rate of 

displacement in the longitudinal direction of the bridge for an average bridge 
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temperature greater than 60°F (16°C). The north abutment experienced an increase 

in the rate of longitudinal displacement when the average bridge temperature 

exceeded 60°F (16°C). 

At the Story County Bridge, the abutment displacements are more symmetric. 

The geometry of this bridge is symmetric, with both piers having a fixed pier detail. 

For this bridge, the west abutment displacements accounted for approximately 55% 

of the change in bridge length. The longitudinal abutment displacements measured 
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at the Story County Bridge remained linear over the entire range of the average 

bridge temperature. 

4.3.2 Abutment rotation in a horizontal plane 

Longitudinal abutment displacements were measured at three positions 

across the width of one abutment at each bridge to determine the plan view rotation 

of the abutment. Any difference in the longitudinal displacements at these points on 

an abutment may be due to rigid-body rotation of the abutment pile cap about a 

vertical axis and to horizontal curvature of the pile cap. 

The change in longitudinal positions for the three points along the width of the 

south abutment pile cap of the Guthrie County Bridge are shown in Figure 4.21 (a). 

Positive distances for the abscissa scale in the graph are measured normal to the 

longitudinal axis of the acute-angle corner in the bridge deck. Figure 4.21 (a) shows 

the south abutment displacements relative to the displacements measured on 

January 5, 1999. At this bridge, the south abutment appears to have rotated in a 

counterclockwise direction in a horizontal plane, i.e. the longitudinal abutment 

displacement of this abutment near the acute-angle corner of the bridge deck was 

greater than that for the obtuse-angle corner of the bridge deck. 

The longitudinal displacements of three points across the width of the east 

abutment of the Story County Bridge are shown in Figure 4.21 (b). A jump in the 

displacement reading at the south corner of the east abutment occurred on June 2, 

1999; therefore, the three, longitudinal, abutment displacements could not be 

compared between the times of the largest range in average bridge temperatures. 

Figure 4.21 (b) shows the east abutment displacement between January 5, 1999 and 
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May 29, 1999. Over this time period the change in the average bridge temperature 

was 95°F (53°C). The east abutment displacements were relative to the 

displacements that were measured on January 5, 1999. The east abutment at the 

Story County Bridgedoes not appear as though it has undergone a rotation about a 

vertical axis. However, the magnitude of the longitudinal displacement measured at 

the mid-width of the abutment is slightly larger than the longitudinal displacement 

measurements at the ends. The difference in these displacements indicate that the 

abutment was subject to flexural bending in a horizontal plane. 

4.3.3 Abutment rotation in a vertical plane 

Figure 4.22(a) shows the rotation of the pile cap at the mid-width of the south 

abutment at the Guthrie County Bridge. Figure 4.22(b) shows the rotation of the pile 

cap at the mid-width of the east abutment at the Story County Bridge. The 

magnitudes for the ranges in the measured rotations are similar at both bridges. 

The pile cap at the Guthrie County Bridge has rotated through a range of about 1520 

microradians (0.087°). The pile cap at the Story County Bridge has experienced a 

rotation of about 1140 microradians (0.065°). The range in the pile cap rotations at 

each bridge varied in some instances by as much as 700 microradians (0.040°). 

The daily variation of the pile cap rotation was greater during the summer months 

than during the winter months. 

4.3.4 Transverse abutment displacements 

Figure 4.23 shows the measured transverse displacement of the center of 

mass for the pile cap at the south abutment of the Guthrie County Bridge. Positive 

displacements indicate that the abutment translated towards the acute-angle corner 
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Figure 4.23. Change in transverse position of the south abutment of the Guthrie 
County Bridge 

of the bridge deck. Expansion of an integral-abutment bridge activates soil 

pressures behind the abutments. For a skew, integral-abutment bridge, a 

component of this passive-soil force is directed towards the acute-angle corner of 

the bridge deck. The south abutment in the Guthrie County Bridge did not return to 

the same lateral position after each yearly cycle of temperature changes. Over the 

monitored time period shown in Figure 4.23, the south abutment of this bridge 

experienced a residual displacement towards the acute-corner of the bridge deck. 

The transverse displacements of the east abutment for the Story County 

Bridge measured at the northeast corner did not appear to be realistic since these 

displacements did not correlate well with the average bridge temperature. These 

displacements were much higher than the comparable displacements that were 
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measured at the Guthrie County Bridge, whose skew angle is larger than that for the 

Story County Bridge. The average abutment expansion and transverse 

displacement of the mid-width of the east abutment of the Story County Bridge could 

not be computed using the measured transverse displacements. 

4. 3. 5 Relative displacements 

Relative longitudinal movements of the bridge superstructure over the pier 

caps were measured at each pier at both bridge sites. These relative displacements 

at the Guthrie County Bridge and Story County Bridge are shown in Figures 4.24 

and 4.25, respectively. The range of the superstructure relative displacement at the 

south and north piers of the Guthrie County Bridge were approximately 0.165 in. (4.2 

mm) and 0.069 in. (1 .8 mm), respectively. The pier details for the Guthrie County 

Bridge indicate that less longitudinal restraint to the superstructure should occur at 

the south pier than that at the north pier. At the south pier, the superstructure sits on 

3. 75-in. (95-mm) thick, steel-reinforced, neoprene pads. The north pier detail shows 

a full-depth, RC diaphragm cast into a beveled keyway in the pier cap that is lined 

with expansion joint filler. The daily range of relative displacements over the north 

pier decreased in the winter months, while the daily variation in the relative 

displacements of the bridge superstructure over the south pier had a nearly constant 

magnitude over the entire monitoring period. 

The construction details for both of the pier diaphragms at the Story County 

Bridge are similar to the pier details for the fixed pier at the Guthrie County Bridge. 

The relative displacements of the Story County Bridge superstructure over the piers 

were smaller than the displacements measured over the north pier at the Guthrie 
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County Bridge. The ranges of relative pier displacements measured at the Story 

County Bridge were 0.039 in. (1.0 mm) and 0.024 in. (0.6 mm) for the east and west 

piers, respectively. The range of motion of the superstructure over the piers at the 

Story County Bridge decreased in the winter months. 

Figure 4.26 shows the relative rotations measured between a monitored pile 

cross section and a pile cap at the Guthrie County Bridge and Story County Bridge, 

respectively. This relative rotation measurement was the relative rotation between 

the bottom of the pile cap and a point on a pile 18 in. (460 mm) below the pile cap. 

In the summer of 1999, the relative pile rotations at a pile in the Story County Bridge 

did not return to same measurements as those recorded in the summer of 1998. 

Also, the relative rotation measured on July 5, 1999 was nearly 0.030° (500 

microradians) less than that which was recorded a month earlier. The bar shown in 

Figure 4.26(b) shows the change in relative pile rotations measured for one 

temperature cycle in 1999. 

Relative displacements measured between the top and bottom flanges of the 

center PC girder and the south abutment backwall at the Guthrie County Bridge are 

shown in Figure 4.27. The displacements measured at the top flange location 

changed significantly in the spring of 1998 compared to the measurements over the 

remaining monitoring period. The initial data from this gage was not considered 

reliable. Since that time, the readings of both transducers are similar and small. No 

evidence of cracking in the RC backwall or the PC girder near the abutments was 

observed at either bridge. 
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4.4 Bridge member strains 

This section describes strains measured in the abutment piles and PC girders 

at the Guthrie County Bridge and Story County Bridge. The experimentally 

measured strains presented in this section represent the typical strains measured in 

the piles at both of the bridges. 

4.4. 1 Pile strains 

The orientation of the abutment piles for the Guthrie County Bridge is such 

that the webs of the piles are parallel to the abutment face. Since the bridge has a 

30° skew angle, a component of the pile-head displacement along the longitudinal 

axis of the bridge will induce x- and y-axis, flexural-bending strains. Figure 4.28 

shows the x- and y-axis, flexural-bending strains at the monitored, top cross section 

of the pile near the mid-width of the north abutment for the Guthrie County Bridge. 

The top cross section was located at 9 in. (230 mm) below the bottom of the pile 

cap. The range in the x- and y-axis, flexural-bending strains were approximately 51 O 

and 620 microstrains, respectively. For a structural steel with a yield stress of 36 ksi 

(248 MPa), the yield strain is about 1240 microstrains. If the y-axis, flexural-bending 

strains, which were measured at about one inch from the flange tips, are linearly 

extrapolated to the extreme fibers of the cross section, the magnitude of the y-axis, 

flexural-bending strains becomes approximately 770 microstrains. At the extreme 

fiber location in the monitored top cross section of the pile, the ratio of the x-axis 

bending strains to the y-axis bending strains was about 0.66. 

At two corners of the HP-shaped, steel piles, the x- and y-axis, flexural

bending strains will be additive. If the measured flexural bending strains in the pile 
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Figure 4.28. Biaxial pile bending strains at 9 in. below the bottom of the pile cap in 
the pile near the mid-width of the north abutment at the Guthrie 
County Bridge 
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near the mid-width of the north abutment of the Guthrie County Bridge are added, 

the flexural-strain range at the extreme fibers of these corners at 9 in. (230 mm) 

below the pile cap is approximately 1300 microstrains. This range in strain change 

is approximately equal to the yield strain of A36 steel. The combined, flexural

bending strain in the steel pile at a cross section that is located at the bottom of the 

pile cap would be even higher than 1300 microstrains. When this strain change is 

superimposed with the compressive axial strain in the steel piles due to the dead 

load of the bridge and with the residual compressive strains at the flange tips, a 

portion of one flange of the HP-shaped pile yielded in compression. 

Larger magnitudes of bending strains in the abutment piles were measured at 

9 in. (230 mm) than at 33 in. (840 mm) below the pile cap. Many of the strain gages 

on the lower cross sections of the piles at the Guthrie County Bridge failed early in 

the monitoring period. Due to the lack of reliable strain data for the lower pile cross 

sections, a vertical extrapolation of the y-axis, flexural-bending strain was not 

possible for any of the monitored piles at the Guthrie County Bridge. Figure 4.29 

shows the x-axis, flexural-bending strains measured at the two instrumented cross 

sections along the length of the west pile for the north abutment of the Guthrie 

County Bridge. The bending strain measurements about the x-axis in the lower 

cross section were reliable until October of 1998. During times when the strain 

gages at both pile cross sections provided reliable data, the bending strains 

measured at the two cross sections had a similar trend versus time. The range in 

the x-axis, flexural-bending strains measured at the upper and lower cross sections 
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Figure 4.29. X-axis pile bending strains at two cross sections in the west pile of the 
north abutment at the Guthrie County Bridge 
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was approximately 350 and 260 microstrains, respectively. For the west pile of the 

north abutment of the Guthrie County Bridge, the extrapolated, x-axis, flexural

bending strain in the steel pile at the bottom of the pile cap was approximately 380 

microstrains. 

Figure 4.30 shows the x- and y-axis, flexural-bending strains for the center 

pile at 9 in . (230 mm) below the bottom of the pile cap of the east abutment for the 

Story County Bridge. Between the middle of August of1998 and early July of 1999, 

the range in measured x- and y-axis, flexural-bending strains was approximately 180 

and 510 microstrains, respectively. The extrapolated, y-axis, flexural-bending strain 

at the tips of the pile flanges for this cross section was about 640 microstrains. The 

ratio of the x-axis to the y-axis flexural-bending strains was about 0.28. This 

bending strains ratio for the abutment piles of the Story County Bridge was lower 

than that for the abutment piles of the Guthrie County Bridge. As was the case at 

the Guthrie County Bridge, the abutment piles at the Story County Bridge were 

oriented with their webs parallel to the abutment face. However, the 15° skew angle 

for this bridge was smaller than that for the Guthrie County Bridge. Therefore, the 

component of the abutment displacement that induced x-axis, pile bending was 

smaller than that for the abutment piles at the Guthrie County Bridge. The 

superposition of the flexural bending strains measured at the top cross section of the 

center pile of the east abutment at the Story County Bridge resulted in a combined

bending, flexural-strain range of approximately 820 microstrains. The combined, 

flexural-bending strain in the steel pile at a cross section that is located at the bottom 

of the pile cap would be even higher than 820 microstrains. When this strain change 
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Figure 4.30. Biaxial pile bending strains at 9 in. below the bottom of the pile cap in 
the center pile at the east abutment at the Story County Bridge 
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is superimposed with the compressive axial strain in the steel piles due to the dead 

load of the bridge and with the residual compressive strains at the flange tips, a 

portion of one flange of the HP-shaped pile has probably yielded in compression. 

Figure 4.31 shows the y-axis, flexural-bending strains at the two, 

instrumented cross sections in the north pile of the east abutment for the Story 

County Bridge. The range in y-axis, flexural-bending strain in the top and bottom 

cross sections in this pile was approximately 610 and 200 microstrains, respectively. 

The difference between the y-axis, flexural-bending strains at the two cross sections 

in the piles was greater that the difference in y-axis pile bending strains recorded at 

the Guthrie County Bridge. At the flange tips, the extrapolated y-axis bending strain 

at the bottom of the pile cap in the north pile of the east abutment was approximately 

950 microstrains, which is less than the theoretical yield strain of 1250 microstrains. 

When the x- and y-axis flexural-bending strains, the compressive axial strain due to 

the dead load of the bridge, and residual compressive strains at the flange tips are 

included in the total strain, a portion of one flange has probably yielded in 

compression. 

4.4.2 Girder strains 

The measured strains in the PC girders did not explicitly indicate strain due to 

stress in the girder, but rather indicated the deformation in the concrete at the gage 

locations. The total , bending-strain gradient included strains due to stress in the 

girder and the contraction or expansion of the girder due to temperature. Strains 

due to stress in the PC girders were determined using the finite-element models. 
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Figure 4.31. Y-axis bending strains at two cross sections in the north pile of the 
east abutment at the Story County Bridge 
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Figures 4.32 and 4.33 show the difference between the measured, total strain 

at the top and bottom flanges for a PC girder near an abutment location and near a 

pier location of the Guthrie County Bridge and Story County Bridge, respectively. 

The total strain gradient in the girder near an abutment was larger than that near a 

pier. This finding indicated that less curvature of the PC girders occurred near the 

piers than near the abutments. 
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Figure 4.32. X-axis total-strain gradient in the east exterior PC girder at the Guthrie 
County Bridge 
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Figure 4.33. X-axis total-strain gradient in the north exterior PC girder at the Story 
County Bridge 
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5 DEVELOPMENT OF Fl N ITE ELEMENT BRIDGE MODELS 

5.1 Structural model 

Finite-element models incorporating linear soil and material properties were 

developed for the Guthrie County Bridge and the Story County Bridge using the 

AN SYS [31] computer-software program. The Guthrie County Bridge, finite-element 

model contained 12,244 nodes and 7,762 elements. The Story County Bridge 

model contained 11 ,920 nodes and 6,630 elements. The finite-element models 

contained of shell, beam, spring , truss, and general matrix elements. Undeformed 

element plots of the finite-element models for the Guthrie County Bridge and Story 

County Bridge are shown in Figure 5.1. Portions of the fin ite-element model for the 

Guthrie County Bridge are shown in Figure 5.2. 

Shell elements (ANSYS SHELL93 element) were used to model the RC deck, 

abutments, and piers. Both quadrilateral shell elements with four corner nodes and 

four mid-side nodes and triangular shell elements with three corner nodes and three 

mid-side nodes were used to form the analytical models for the bridges. Each node 

had three translational and three rotational degrees of freedom. The thickness of 

each shell element matched the thickness of the particular bridge member in the 

structure. The aspect ratios of the shell elements were generally less than 2:1. This 

ratio was less than the 5: 1 maximum aspect ratio specified by the 1998 AASHTO 

LFRD Bridge Design Specifications [32]. 

PC girders, steel piles, and the Guthrie County Bridge guardrail were 

modeled using three-dimensional, beam elements (ANYSY BEAM44 element). Two 
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(a) Guthrie County Bridge 

J\NSYS 
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(b) Story County Bridge 

Figure 5.1. ANSYS finite element bridge models 
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Pier/diaphragm 
connection 

(a) Guthrie County Bridge, typical abutment and pier 

J\Nt;n;,.r.··, 
·,'t.t r~ 

(b) Guthrie County Bridge model showing elements with thickness 

Figure 5.2. Components of the Guthrie County Bridge finite element model 
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nodes defined the beam element with a third node used to orient the cross-sectional 

axis . The two end nodes were located at the center of gravity of the beam member. 

Geometric beam properties including area, depth, and moments of inertia were 

assigned to the element. 

Full-composite action was assumed between the slab and girders. Constraint 

equations (ANSYS CERIG command) were used to create rigid links that connected 

the vertically aligned nodes of the slab and girders. These constraint equations 

coupled all degrees of freedom (translation and rotation) between the slab and girder 

nodes. 

A truss element (ANSYS LINKS element) was used to model the steel 

intermediate diaphragms between the PC girders in the Guthrie County Bridge. A 

truss element is a uniaxial tension-compression element with three translational 

degrees of freedom at both of its nodes. The connection of the diaphragm to the 

web of the girder was assumed to be a pinned connection. Shell elements were 

used to model the RC intermediate diaphragms in the Story County Bridge. 

Full-moment transfer was assumed between the piles and the RC abutment 

in which they are embedded. The abutment piles are embedded about 36 in. (91 O 

mm) into the pile caps at both bridges. As shown in Figure 5.2(a), the beam nodes 

share the corner nodes of the shell elements at the location of the embedded pile, 

which creates a rigid connection between the elements. The piles in the Story 

County Bridge piers are embedded within the entire height of the piers. 

The north pier at the Guthrie County Bridge is classified as a fixed pier. 

Between the girders of the fixed piers, a keyway is formed into the pier cap with the 
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concrete diaphragm bearing on expansion material placed on the bottom and along 

the sides of the keyway, as shown in Figure 5.3(a). The connection between the 

pier cap and the RC diaphragm is not perfectly fixed, since small relative longitudinal 

movements can occur by compressing the expansion pads on the sides of the 

keyways. A general matrix element (MATRIX27) is developed using structural 

analysis matrix methods [33] to model the connection of the concrete diaphragm and 

the pier cap on which the superstructure bears. The general stiffness element 

incorporates the translational and rotational stiffness of the connection and allows for 

small relative movements. 

The south pier of the Guthrie County Bridge is an expansion pier with the PC 

girders bearing on 3.75 in. (95mm)-thick neoprene pads, as shown in Figure 5.3(b). 

A connection does not exist between the RC diaphragm and the pier cap. The low 

shear stiffness (G = 0.10 ksi or 0.69 MPa) of the thick neoprene pad provides 

minimal resistance to the translation of the superstructure over the piers, creating a 

connection similar to a roller support. Linear spring elements (COMBIN14) 

represented the vertical compression stiffness and the shear stiffness of the bearing 

pads that support the girders at the piers. Typical properties of neoprene pads were 

obtained from Lee [34]. 

The details of both diaphragm/pier connections at the Story County Bridge 

are the similar to the fixed pier at the Guthrie County Bridge. Because the relative 

movements measured at the fixed pier on the Guthrie County Bridge were very 
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Figure 5.3. Typical pier/pier diaphragm connection details (35) 

small, the relative movements at the piers of the Story County Bridge were 

neglected. The pier and pier cap elements had common nodes at the bearing point. 

The pier footings for the Guthrie County Bridge are founded on shale. The 

normal foundation stiffness was assumed to be 100 ton/ft3 (31400 kN/m3
) and the 

frictional stiffness is 50 ton/ft3 (15700 kN/m3
), as recommended by Barkan (36). 

A summary of the bridge elements and the material properties for the Guthrie 

County and Story County Bridges is given in Table 5.1. Material properties are 

based on the design plans for the respective bridges. Values of the a-coefficient are 

based on laboratory tests that were conducted by Ng [37] at Iowa State University. 
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Table 5.1. Properties of the modeled bridges 

CAST-IN-PLACE CONCRETE 
Compressive strength, f' c (ksi) 
Modulus of elasticity, E (ksi) 
Shear modulus, G (ksi) 
Poisson's ratio, µ 
Ory coefficient of thermal 
expansion and contraction, a 
(in./in.f'F) 
Maximum coefficient of thermal 
expansion and contraction, a 
(in./in.f'F) 

PRESTRESSED CONCRETE 
Compressive strength, f' c (ksi) 
Modulus of elasticity, E (ksi) 
Shear modulus, G (ksi) 
Poisson's ratio, µ 
Dry coefficient of thermal 
expansion and contraction, a 
(in./in.f'F) 
Maximum coefficient of thermal 
expansion and contraction, a 
(in./in.f'F) 

STEEL SECTIONS 
Coefficient of thermal expansion, 
a (in/inf'F) 

GUTHRIE COUNTY 
BRIDGE 

3.5 
3400 
1420 
0.20 

5.8 x 10"6 

6.4 x 10"6 

6.0 
4400 
1710 
0.20 

4.3 x 10"6 

4.7x10·6 

6.5 x 10"6 

STORY COUNTY 
BRIDGE 

3.5 
3400 
1420 
0.20 

4.8 x 10"6 

5.3 x 10"6 

5.0 
4000 
1680 
0.20 

4.3 x 10"6 

4.7 x 10"6 

6.5 x 10"6 
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5.2 Pile-soil model 

The Winkler soil model [4) was used for the analysis of the soil/pile 

interaction, which assumes that the soil can be represented as a series of vertical 

and lateral springs along the length of the pile and an end bearing point spring. A 

discussion of the Winkler soil model is described by Greimann, et al., which is 

reproduced in Appendix C. Linear spring elements (ANSYS COMBIN14 element) 

were used to model the pile/soil interaction in the finite-element models. 

The Guthrie County Bridge and Story County Bridge, finite-element models 

incorporated the linear, Winkler, pile, soil model based on the initial stiffness of the 

soil, kh. Spring elements representing the two normal stiffnesses (normal to flange 

and normal to web}, vertical skin friction stiffness, and the end bearing stiffness were 

applied at each pile element node. 

Soil parameters were based on the soil-boring data that was presented in the 

construction plans for both of the bridges. Soil borings for the abutment locations at 

the Guthrie County Bridge are shown in Figure 5.4. Soil borings for the abutment 

and pier locations at the Story County Bridge are shown in Figure 5.5. Soil stiffness 

is calculated based on the equations presented in Tables C.1 through C.3 in 

Appendix C. The boring data was used to classify soil by type (clay or sand) and by 

standard penetration blow counts (N) to determine approximate soil parameters from 

Tables C.4 or C.5 in Appendix C. Effective soil unit weights were estimated by 

considering the moisture conditions at the bridge sites. At the Guthrie County 

Bridge, saturated soil conditions were encountered at the north abutment, and dry 
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Elevation (ft) Soil description Elevation (ft) Soil description 

1002.5 1001.4 

Firm sandy clay fill Firm sandy clay fill 
994.5 ........ Concrete 993.9 
994.0 

Stiff to firm sandy clay 

Stiff to firm sandy clay 
w/ acc. boulders 

979.4 ' Boulders 
977.5 

Boulders 
973.5 

,, .... ,, ..... 978.4 Shale with sandstone ,,,,,, 
' seams 971.4 

Shale with sandstone 
seams 

, ......... ,,, 959.5 

(a) Near south abutment (b) Near north abutment 

Figure 5.4. Soil borings at the Guthrie County Bridge (not to scale) 

soil conditions were encountered at the south abutment. Soil in the berm adjacent to 

the abutments of the Story County Bridge was dry when first excavated for installing 

strain gages on the selected piles. Over the monitoring period, the soil near the 

north pile of the east abutment became saturated. Soil near the other monitored 

piles remained dry or became slightly damp. Soil for the Story County Bridge, finite-

element model was assumed to be dry at all locations. A pile-soil stiffness 

distribution is given in Figure 5.6 for a pile in the south abutment at the Guthrie 

County Bridge, showing the lateral, soil-spring stiffness (normal to flange) at the 

node locations along the depth of a pile. 

For the Guthrie County Bridge, the piles were driven through an 8-ft (2440 

mm) deep, 16-in. (410 mm) prebored hole. A bentonite slurry filled the prebored 
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920.8 

912.8 

905.8 

883.8 

857.8 

Soil description 

Stiff sandy clay fill 

Stiff sandy clay 

Medium sand w/ acc. 
gravel & clay layers 

Very firm sandy 
glacial clay w/ acc. 
boulders 

(a) Near west abutment 

Elevation (ft) Soil description 

922.3 • 
Bridge floor to water 

905.8 • Water 
904.8 • Stiff sandy clay 
902.3 

Coarse sand 
898.3 

Very firm sandy 
glacial clay w/ acc. 
boulders 

864.3 • 

(c) Near east pier 

115 

Elevation (ft) Soil description 

921.8 
Bridge floor to ground 

906.8 

903.8 
Stiff sandy silty clay 

Medium sand w/ occ. 
895.8 gravel layers 

Very firm sandy glacial 
887.8 ' clay w/ occ. boulders 

(b) Near west pier 

Elevation (ft) Soil description 

923.0 
Stiff sandy clay fill 

915.0 ' 
912.0 

Stiff sandy clay ., 
Very firm sandy 
glacial clay w/ acc. 

899.0 ' boulders 

(d) Near east abutment 

Figure 5.5. Soil borings at the Story County Bridge (not to scale) 
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Figure 5.6. Pile soil stiffness distribution for the south center pile at the Guthrie 
County Bridge 

holes. Bentonite slurry is a soft mixture with water being the majority of its 

composition [37). During the excavation of the piles for installing the strain gages, 

the researchers noted that the bentonite had a consistency of a pliable, clay-type 

soil. The stiffness of the bentonite slurry was considered minimal; therefore, the 

lateral and vertical stiffness of this material was neglected in the Guthrie County 

Bridge, finite-element model. 

The abutment piles at the Story County Bridge were driven in similar prebored 

holes that did not contain a bentonite slurry. An uncompacted loose sand was 

placed in the pre bored holes. Loose sand properties were used for the region of the 

prebored holes for the Story County Bridge, finite-element model. 
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5.3 Abutment backfili model 

Linear-spring elements (ANSYS COMBIN14 element) were also used to 

model the soil backfill behind the abutments. At each discrete point where the soil-

interface conditions between the bridge structure and soil are modeled, one spring 

was oriented normal to the bridge member and two springs were oriented tangential 

to the bridge member surface, as shown in Figure 5.7. The tangential springs were 

orthogonal (horizontal and vertical) to each other to represent frictional forces 

induced by the soil interaction with the abutment surface. 

Other researchers have presented design curves to describe the lateral soil 

pressure behind rigid retaining walls that is induced by wall movement towards the 

I I I 
I I I 
I I I 
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' ' 1 

. . . . . . . . . . . . . . . , . . . •. . . , . . . . ' . , . . . . . . . . . . . . 
' ' ' ' ' ' 1 

Figure 5.7. Typical soil springs on finite element models 
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backfill (passive movement) and away from the backfill (active movement) [14; 38-

41]. Effective soil pressures induced by wall movements can be expressed in terms 

of an earth-pressure coefficient, k: 

where, 

k = a~ori:m11a1 I a:.er1ica1 

cr~,,,;'°"'"1 =effective horizontal stress in the soil 

cr;.,,,;'"1 = yz =effective vertical stress in the soil 

y' = effective unit weight of the soil 

z = soil depth 

(5.3) 

The Rankine theory [42] provides a simple determination of the earth 

pressure coefficients neglecting wall friction. For a wall at rest, Rankine's coefficient 

of earth pressure at rest is: 

k,, =I-sin¢ (5.4) 

where, ~ is the angle of internal friction of the soil. For a rigid wall pushed into a soil 

mass, Rankine's passive earth pressure coefficient is: 

kpm·,;w =tan 2 (45°+¢/2) (5.5) 
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As a wall is moved away from the soil, Rankine's active earth pressure coefficient is: 

kac1;.., = tan 2 (45°-¢/2) (5.6) 

Design curves presented by the Canadian Foundation Engineering Manual [39], 

Husain and Bagnaroil [40], and Clough and Duncan [14] are shown in Figure 5.8. 

The Canadian Foundation Engineering Manual (1992) contains design curves 

similar to those proposed in NAVFAC DM-7 (41] that include wall friction effects. 

The National Cooperative Highway Research Program (NCHRP) (38] adopted 

design curves for cohesionless soil based on the work of Clough and Duncan's 

recommendations. 

Research by Ting and Faraji (43] compared numerous design curves with 

experimental studies conducted for the pile-to-soil interaction. Ting and Faraji 

determined that the NCH RP design curve underestimates ultimate passive pressure 

and overestimates initial lateral stiffness for dense and medium dense sand. The 

Canadian Foundation Engineering Manual design curve more closely matches the 

experimental data for dense and medium sands. Both design curves provide an 

accurate representation of the experimental data for loose backfill. 

Ting and Faraji determined that the rotation of a wall about its base (top of 

wall displaces further into the soil than in a pure translational case) creates higher 

pressure in the top portion of the wall with slightly lower pressures at the bottom of 

the wall. Ting and Faraji stated that if a triangular soil pressure distribution is 
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distribution along the height of a wall will not create a significant error when 

determining the total soil pressure on the wall. Therefore, linear springs with a 

triangular stress distribution were used to approximate the force-deflection condition 

of the granular backfill. 

Spring stiffness for the finite-element models were based on passive-soil 

stiffness to represent the effect of the abutment pushing into the backfill during 

bridge expansion. The initial slope of the passive, force-deflection curves presented 

in Figure 5.8 were used to represent the backfill stiffness behind the abutments in 

the finite-element models. The maximum passive force, Fpassive. on an abutment 

finite element, with an area Ae1ement. at a given depth is: 

(5.7) 

where, the effective vertical stress was determined at the depth below the surface of 

the element centroid. The total spring stiffness, Kspring, per wall element is: 

K.~pring ::: F pa.nfre J ~ p<u.1il'e (5.8) 

in which, ~passive is the displacement required to reach the maximum passive-soil 

pressure. Nodal spring stiffnesses were computed by evenly distributing Kspring to 

each of the corner nodes of the abutment wall element. 
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The backfill soil behind the abutments is specified as a compacted granular 

soil. Loose, medium, and dense sand backfill properties are shown in Table 5.2. 

Approximate displacements required to reach active and passive-soil pressure 

conditions are shown in Table 5.3. The frictional stiffness of the abutment backfill 

was initially assumed to be one-half of the normal stiffness, as recommended by 

Barkan [36). The frictional stiffness was adjusted if this initial value did not produce 

adequate transverse abutment displacement results. Both bridge finite-element 

models are calibrated by adjusting the backfill stiffness until the finite-element model 

displacements match the experimental displacements, as will be discussed in 

Chapters 6 and 7. 

Table 5.2. Typical properties for cohesionless sands [43) 

TYPE OF 
BACKFILL 

Loose sand 
Medium sand 
Dense sand 

ANGLE OF 
INTERNAL 
FRICTION,~ 

(degrees) 

30 
35 
40 

TYPICAL DRY 
UNIT WEIGHT, Ydry 

(Jb/ft3
) 

90-125 
110-130 
110-140 

TYPICAL 
SATURATED 

EFFECTIVE UNIT 
WEIGHT, Y'sat (Jb/ft3

) 

55-65 
60-70 
65-80 

Table 5.3. Approximate horizontal wall displacement to activate passive and active 
earth pressure [14) 

TYPE OF BACKFILL 

Loose sand 
Medium-dense sand 

Dense sand 
Note: H = height of wall 

DISPL. TO REACH 
ACTIVE PRESSURE, 

Llactive/H 

0.004 
0.002 
0.001 

DISPL. TO REACH 
PASSIVE PRESSURE, 

Llpassive/H 

0.04 
0.02 
0.01 
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5.4 Applied temperature distribution 

5. 4. 1 Spatial distribution 

A primary emphasis of the project was to determine effects of thermal loads 

on abutment piles in integral-abutment bridges. Analysis of the experimental 

temperature data for the Guthrie County Bridge and Story County Bridge was 

described in Section 4.2. The experimental data were used to estimate longitudinal, 

transverse, and vertical temperature distributions that were applied to the finite 

element models for a given point in time. 

For purposes of thermal loading, each span at the Guthrie County Bridge was 

divided into fifteen temperature regions, as shown in Figure 5.9(a). The temperature 

regions were selected based on the location of the thermocouples in the most 

intensely instrumented south span. The width of the bridge was divided into five 

regions corresponding to the five girders. Since thermocouples were not installed in 

the second and fourth PC girders, an average temperature distribution of the 

adjacent girders was used for these girders. The limited amount of thermocouples in 

the middle and north spans produced temperature readings that were similar to 

those at similar locations in the south span; therefore, the temperature distribution of 

these spans was assumed to be the same as that of the south span. Temperatures 

recorded by the thermocouples nearest to the abutment are also used for the 

locations nearest to the pier supports, since both of these locations are at regions of 

large thermal mass. 

For a given point in time, a vertical temperature gradient through the slab 

thickness and girder depth was applied in each of the fifteen regions in the finite-
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1/4 span 112 span 114 span 

(a) Guthrie County Bridge 

(b) Story County Bridge 

Figure 5.9. Superstructure temperature regions 
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element model for the Guthrie County Bridge. The interpolated vertical temperature 

gradients were based on the experimental results that were described in Section 

4.2.2. A bi-linear vertical temperature distribution was applied as a loading condition 

to the finite-element models of the bridges defined by three temperatures at specific 

points along the depth of the superstructure: top of slab, bottom of slab/top of girder, 

and bottom of girder. 

A simpler temperature distribution was applied to the superstructure of the 

Story County Bridge, finite-element model. As discussed in Section 4.2.4, 

longitudinal temperature variations were not significant and were not incorporated 

into the applied temperature loading. The temperature distribution was relatively 

constant over the width of the Story County Bridge, except under the solid guardrail 

as shown in Figure 4.16. Figure 5.9(b) shows the applied slab temperature 

distribution in one span of the Story County Bridge. 

A thermocouple was embedded in the abutment to estimate the temperature 

change of the exposed face of the abutment. The back face of the abutment was 

assumed to have a negligible change in temperature at a few feet below the surface. 

Temperatures for the portion of the piles exposed in the excavation were based on 

thermocouples located at the piles. Pier temperatures were estimated based on the 

average concrete temperature of the bridge. 

5.4.2 Time variations 

The range in the experimentally measured bridge member temperatures 

between the times of the coldest and hottest average bridge temperature was 

applied to the respective analytical bridge models. Bridge member strain 
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comparisons between the analytical models and the experimental data were made 

only when a given gage produced reliable data over at least one cold to hot 

temperature cycle. Many strain gages failed before a complete temperature cycle 

was achieved, resulting in incomplete temperature ranges of reliable data as 

discussed in Section 4.1. 
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6 ANALYTICAL STUDY AND INTERPRETATION OF EXPERIMENTAL RESULTS 

FOR THE GUTHRIE COUNTY BRIDGE 

6.1 Bridge displacement 

Thermal bridge length changes are investigated using the Guthrie County 

Bridge finite-element model. The magnitude of the thermal length change is a 

function of the bridge length, change in the bridge temperature, a-coefficient of the 

bridge members, and the soil restraining forces. 

Magnitudes for the a-coefficients and other material properties for the Guthrie 

County Bridge are provided in Table 5.1. The applied temperature distribution on 

the bridge structure was discussed in Section 5.4 of this report. The temperature 

ranges applied to the analytical models were for a temperature rise from the coldest 

to the hottest day. 

Lateral backfill stiffness behind the abutment is the major factor in restraining 

the longitudinal displacement of the abutments. The lateral soil stiffness adjacent to 

the piles affects the flexural-bending forces induced in the pile, but has a negligible 

effect on the longitudinal abutment displacement [43]. The abutment backfill 

material was only specified in the construction plans as a "compacted granular 

backfill". Compaction and moisture conditions were not prescribed, so that the in

situ properties of the backfill were not known. To study the bridge behavior, the 

finite-element model was calibrated by adjusting the soil properties until the 

abutment displacements approximately matched the corresponding experimental 

longitudinal and transverse abutment displacements. 
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The initial slope of the Clough and Duncan design curves (Figure 5.B(c)) was 

used to model the lateral stiffness of the abutment backfill. Only linear soil springs 

were used in the finite-element models. The non-dimensional initial slope, S, of the 

design curves for the lateral backfill stiffness is approximately: 

(6.1) 

where, Rankine's passive soil-pressure coefficient, kpassive. and the corresponding 

ratio of wall displacement to wall height, iVH, were chosen along the initial slope of 

the backfill stiffness design curve. Again, the reader is reminded that the model 

does not account for the nonlinear characteristics of the backfill. A summary of the 

approximate initial slopes for the three classifications of granular backfill is provided 

in Table 6.1. 

The model calibration involved matching the analytical and experimental 

abutment displacement data for the time period with the largest average bridge 

temperature range. The applied temperatures corresponded to the temperature 

change from the time of the coldest average bridge temperature (January 5, 1999, 

Table 6.1. Approximate initial slopes for lateral backfill stiffness based on the 
Clough and Duncan Design Curves in Figure 5.B(c) 

TYPE OF BACKFILL INITIAL SLOPE, S 
Loose sand 130 

Medium-dense sand 400 
Dense sand 2000 
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4:00 a.m.) to the time of the hottest average bridge temperature (July 20, 1998, 8:00 

p.m.). The maximum, experimental, average, bridge temperature range was 113°F 

(62.8°C). 

6.1. 1 Longitudinal abutment displacements and change in bridge length 

The abutment backfill stiffness was adjusted until the analytical longitudinal 

abutment displacements at the mid-width of the north and south abutment and the 

south abutment transverse displacements were within an acceptable degree of 

accuracy. As discussed in Section 4.3.1, there was a significant difference in the 

magnitude of the longitudinal displacements of the north and south abutments at the 

Guthrie County Bridge. The longitudinal displacement of the north abutment was 

approximately twice that of the south abutment. Therefore, the lateral backfill 

stiffness of the south abutment must be greater than that of the north abutment. 

There was also a significant amount of water in the soil at the north abutment. The 

abutment backfill was considered saturated behind the north abutment and dry 

behind the south abutment. 

If the dry condition for the a-coefficients of the concrete is applied to evaluate 

temperature effects on bridge length, the actual bridge length change will be 

underestimated. In reality, the a-coefficients of the concrete members is between 

that for the 100% dry and 100% saturated conditions. The Guthrie model used the 

maximum values for the a-coefficients of the concrete. 

The analytical models of the Guthrie County Bridge that are based on the 

calibrated finite-element model are referred to as the Guthrie, Series-A models. (A 

second series of Guthrie County Bridge, finite-element models will be introduced 
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later in this chapter.) The analytical model, whose predicted abutment 

displacements closely matched the corresponding experimental displacements, is 

called the Guthrie, Series-A, Best-Soil model. For this model, the initial slope for the 

lateral stiffness relationship of the south abutment backfill, Ssouth. was equal to 520, 

which is slightly greater than the initial slope for a dry granular medium-dense soil as 

defined by the Clough and Duncan design curves (Figure 5.8(c)). The initial slope 

value of the north abutment backfill, Snorth. was equal to 380 for a saturated granular 

soil, which is approximately equal to that for a medium-dense soil. 

The analytical abutment displacements were compared with the experimental 

abutment displacements to determine if the soil was adequately represented in the 

calibrated finite-element model. The Guthrie, Series-A, Best-Soil model had 

displacement errors of less than 2% compared to the experimentally measured 

longitudinal displacements at the mid-width of the north and south abutments. The 

analytical transverse displacements were within 10% of the experimental 

measurements at the east and west corners of the south abutment. 

To indicate sensitivity of the abutment displacements to the lateral soil 

stiffness, upper and lower-bound Guthrie, Series-A models were formulated by 

varying the abutment backfill stiffness and the stiffness of the soil adjacent to the 

piles. The upper and lower-bound models incorporated a fixed change in soil 

stiffness adjacent to the piles at both abutments and the stiffness of backfill behind 

the south abutment. The lateral stiffness of the backfill behind the north abutment 

was adjusted so that the experimental north-to-south longitudinal abutment 
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displacement ratio matched the ratio of the experimental differential abutment 

displacement. 

Four finite-element bounding models with limits placed on the lateral stiffness 

of the soil behind the abutment and adjacent to the abutment piles were 

investigated: (1) lower-bound backfill/lower-bound pile-soil, (2) upper-bound 

backfill/upper-bound pile-soil, (3) upper-bound backfill/lower-bound pile-soil, and (4) 

lower-bound backfill/upper-bound pile-soil. A 50% change in the soil stiffness was 

used for the bounding models. The lower-bound backfill stiffness is approximately 

midway between the stiffness of the loose and medium-dense soils. The upper-

bound backfill stiffness is approximately one-quarter of the way from the stiffness of 

the medium-dense to the stiffness of the dense backfill. A summary of the backfill 

stiffness and the change in bridge length for the Guthrie, Series-A models is 

provided in Table 6.2. 

Table 6.2. Change in bridge length predicted by the Guthrie, Series-A models 

GUTHRIE, SERIES-A MODEL 

sest~soff- · -········ -·········· 
Lower-bound backfill/lower

bound pile-soil 
Upper-bound backfill/upper

bound pile-soil 
Upper-bound backfill/lower

bound pile-soil 
Lower-bound backfill/upper

bound pile-soil 
Experimental 

Ssouth 

520 

261 

783 

783 

261 

Snorth 

380 

154 

607 

637 

134 

CHANGEIN CHANGE 
FROM 

BRIDGE BEST-SOIL 
LENGTH (in.) fv1Q[)J::~("/o) 

1.772 

1.918 +8.2 

1.647 -7.1 

1.642 -7.3 

1.911 +7.8 

1.767 
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A comparison of the longitudinal abutment displacements across the width of 

the abutment is shown in Figure 6.1. Longitudinal displacements were 

experimentally measured at three locations across the width of the south abutment, 

but only at the mid-width location of the north abutment. The analytical predictions 

for the plan-view rotations of the south abutment occurred in the same direction as 

that measured in the field. The longitudinal abutment displacement was larger at the 

acute-angle corner than at the obtuse-angle corner of the bridge deck. The largest 

abutment displacement that was predicted by the four bound models is referred to 

as the maximum in Figure 6.1. The maximum displacement occurred under the 

loosest soil conditions (lower-bound backfill/lower-bound pile-soil). Conversely, the 

minimum abutment displacement shown in Figure 6.1 occurred under the stiffest soil 

conditions (upper-bound backfill/upper-bound pile-soil). 

6. 1.2 Transverse abutment displacement 

Transverse abutment displacements occur in skew bridges due to the 

component of the passive-soil pressure that acts normal to the abutment backwall. 

The resulting force acts perpendicular to the longitudinal axis of the bridge and 

pushes the abutment in the direction of the acute-angle corner of the bridge deck. 

The thermal expansion and contraction of the abutment also causes transverse 

movements of an abutment. Thermal expansion of the abutment is additive with the 

transverse displacement at the acute-angle corner of the bridge deck. 

The stiffness of the tangential soil-springs on the abutment back face was 

equal to a percentage of the normal backfill spring stiffness, which was adjusted to 
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Figure 6.1. Comparison of the longitudinal abutment displacements between those 
predicted by the Guthrie, Series-A models and the experimental 
measurements at the Guthrie County Bridge 
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match the experimental transverse displacements of the south abutment of the 

Guthrie County Bridge. The stiffness of the tangential springs was initially assumed 

to equal one-half of that for the normal backfill springs, as recommended by Barkan 

(36). The transverse displacements of the south abutment were too high using this 

value for the tangential spring stiffness. A one-to-one ratio of tangential spring 

stiffness to the normal spring stiffness is used in the Guthrie, Series-A, Best-Soil 

model to match the experimental transverse abutment displacements. 

The analytical and experimental ranges for south abutment transverse 

displacements between the coldest day (January 5, 1999) and hottest day (July 20, 

1998) are shown in Figure 6.2. Transverse abutment displacements were not 

experimentally measured at the north abutment of the Guthrie County Bridge. 

6.1.3 Abutment rotation in a vertical plane 

Abutment rotation in a vertical plane parallel to the longitudinal axis of the 

bridge is caused by a moment produced by a resultant of the abutment backfill and 

pile restraining forces acting below the center of gravity of the superstructure, the 

temperature gradient existing through the depth of the superstructure, and the 

difference between the ex-coefficients for the deck and girders. The experimental 

rotation of the south abutment of the Guthrie County Bridge was extremely small, 

with a range of approximately 0.080° (1400 microradians). 

The Guthrie, Series-A, Best-Soil model overestimated the field-measured 

rotation of the south abutment by nearly a factor of two. Attempts to correct the 

predicted abutment rotations included: (1) applying a horizontal restraining force at 

the deck level to represent the force created by the bridge expansion against the 
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Figure 6.2. Comparison of the longitudinal abutment displacements between those 
predicted by the Guthrie, Series-A models and the experimental 
measurements at the Guthrie County Bridge (positive towards acute
angle corner of the bridge deck) 

approach slab, (2) reducing the temperature gradient through the superstructure, (3) 

reducing the difference in the a-coefficient between the deck and girders, and (4) 

using different abutment backfill pressure profiles other than the assumed triangular 

distribution through the depth. 

Forces representing the friction between the approach slab and the corbel 

located on the backside of the abutment had a negligible effect on the predicted 

abutment rotation. Reducing the temperature gradient or the difference in the a-

coefficient between the girders and deck slightly reduced the rotation, but the 
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analytical abutment rotation still overestimated the experimental measurement. 

Unreasonable abutment backfill pressure distributions, such as a reversed triangular 

distribution with the maximum pressure at the ground level reducing to zero pressure 

at the abutment base, did not correct the problem. Nonlinear abutment backfill 

pressures should be investigated in the future. The cause of the abutment rotation 

discrepancy could not be determined. 

The predicted pile flexural-bending strains were affected by the 

overestimation of the abutment rotation. For the pile orientation used in the Guthrie 

County Bridge, the abutment rotation affects y-axis, flexural-bending strains induced 

in the pile. When a pile head translates in the longitudinal direction of the bridge, 

abutment rotation reduces the rotational restraint at the top of the pile and causes a 

reduction in the y-axis, flexural-bending strains for a pile. The predicted y-axis pile 

strains in the Guthrie, Series-A, Best-Soil model underestimated the experimental y

axis, flexural-bending strains. 

Since the abutment rotates in a vertical plane, the abutment displacement in 

the longitudinal direction of the bridge varies with the depth of the abutment. When 

the bridge expands, the vertical abutment rotation caused the top of the bridge deck 

to displace further than the base of the abutment, as shown in Figure 6.3. Using 

small rotation theory and assuming that the abutment is a rigid body, the difference 

in the displacement between the top of the deck and the bottom of the abutment is 

equal to habut8abut· Assuming a triangular backfill pressure distribution increasing 

with depth, the backfill pressures were minimal at the shallower depths behind the 

abutment. The magnitude of the thermal expansion of the bridge superstructure is 
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habut 

µ 
habutElabut El abut 

Figure 6.3. Rotation of an integral abutment 

virtually unaffected by the low pressures at the top of the abutment. Other 

researchers state that the soil restraining forces have a minimal effect on the thermal 

bridge length changes [8, 13]. The magnitude of the expansion of the bridge 

superstructure, and hence the longitudinal displacement at the top of the abutment, 

will be nearly the same regardless of abutment rotation. However, increasing the 

vertical rotation results in an increased habutElabut term, which results in a decreased 

longitudinal displacement at the bottom of the abutment. 
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To determine the consequences of the discrepancy between the predicted 

and measured abutment rotations, a second finite-element model was used in which 

the abutment rotation was adjusted to equal the experimental measurements. 

These finite-element models are referred to as the Guthrie, Series-B models. The 

previously described calibration method was used, except rotational constraints 

were applied to the element nodes for the south abutment nodes to cause the 

magnitude of the analytical abutment rotation to equal the experimental abutment 

rotations. Experimental abutment rotations were not available for the north 

abutment to study the rotations for this abutment. Since using the maximum thermal 

coefficient of expansion overestimates the abutment displacements, the Guthrie, 

Series-B models use the dry thermal coefficient of expansion values. 

The Guthrie, Series-B models had a looser abutment backfill than that 

predicted for the Guthrie, Series-A models. The calibrated initial slope for the lateral 

stiffness relationship of the south abutment backfill, Ssouth, in the Guthrie, Series-B

Best-Soil model is 440, which is approximately equal to the initial slope of a dry, 

granular, medium-dense soil. 

Upper and lower-bound soil-stiffness models were investigated using the 

Guthrie, Series-B models. Four bounding models as previously described (lower

bound backfill/lower-bound pile-soil, upper-bound backfill/upper-bound pile-soil, 

upper-bound backfill/lower-bound pile-soil, and lower-bound backfill/upper-bound 

pile-soil) were used to determine the minimum and maximum limits for the y-axis, 

flexural-bending strains of the south abutment piles. The x-axis, flexural-bending 

strains were only slightly affected by the abutment rotation. Therefore, these strains 
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were not investigated with these models. The changes in longitudinal abutment 

displacement for the Guthrie, Series-B models are shown in Table 6.3. 

The abutment displaced further longitudinally at the acute-angle corner of the 

bridge deck than at the obtuse-angle corner of the bridge deck in the Guthrie, 

Series-B models, matching the trend of the experimentally measured abutment 

displacements. 

Table 6.3. Change in bridge length predicted by the Guthrie, Series-B models 

GUTHRIE, SERIES-B MODEL 

Best-Soil 
Lower-bound backfill/lower

bound pile-soil 
Upper-bound backfill/upper

bound pile-soil 
Upper-bound backfill/lower

bound pile-soil 
Lower-bound backfill/upper

bound pile-soil 
Experimental 

Ssouth 

435 

218 

653 

653 

218 

6.1.4 Relative displacements at the piers 

Snorth 

.... ---···-·--······ 

284 

114 

454 

480 

85 

CHANGEIN CHANGE 
FROM 

BRIDGE BEST-SOIL 
LENGTH (in.) l\llQ[)i=LJo/o) 

1.772 

1.918 +8.2 

1.647 -7.1 

1.642 -7.3 

1.911 +7.8 

1.767 

Relative displacements in the longitudinal direction between the pier cap and 

a PC girder were measured at both piers of the Guthrie County Bridge. The range in 

the relative pier displacements was larger at the south pier, which is an expansion 

pier as shown in Figure 5.3(b). The experimental range for the relative pier 

displacements at the south pier between June 20, 1998 and January 5, 1999 was 
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0.040 in. (1.0 mm). For the south pier, the relative pier displacement from the 

Guthrie, Series-A, Best-Soil model was 0.023 in (0.6 mm). The upper and lower 

bounds for the relative pier displacement at the south pier were 0.033 in. (0.8 mm) 

and 0.011 in. (0.3 mm), respectively. The models underestimate the experimental 

measurements. 

The fixed-pier detail shown in Figure 5.3(a) for the north pier at the Guthrie 

County Bridge was not completely fixed regarding relative displacement between the 

pier diaphragm and the pier cap, since the keyway between these components is 

lined with a compressible expansion joint filler. Smaller relative displacements were 

measured at the north pier than at the south pier. An experimental range for the 

relative pier displacement of 0.027 in. (0. 7 mm) was measured at the north pier 

between June 20, 1998 and January 5, 1999. The analytical prediction for the 

relative pier displacement was 0.014 in. (0.4 mm) at the north pier. The analytical 

models underestimate the relative pier movement at the north abutment, but the 

researchers considered the difference in the magnitude between the analytical and 

experimental to be too small to affect the predicted bridge behavior, such as the 

longitudinal abutment displacements. 

6.1.5 Relative displacements at the abutment 

The relative rotation was measured between the pile cap of the south 

abutment and a point on a pile that is 18 in. (460 mm) below the pile cap at the 

Guthrie County Bridge. The experimental range in relative pile rotation was 

approximately 0.100° (1700 microradians). As shown in Figure 6.4, the Guthrie, 
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Figure 6.4. Comparison of predicted relative pile rotations with experimental 
measurements at the Guthrie County Bridge 

Series-A models underestimated the relative pile rotation, which is attributed to the 

overestimated abutment rotation. Relative pile rotation results from the Guthrie, 

Series-B models are also shown in Figure 6.4. An elimination of the abutment 

rotation discrepancy results in a good correlation between the analytical and 

experimental relative pile rotation. 

Relative displacements in the longitudinal direction of the bridge between the 

top and bottom flange of the center PC girder and the south abutment backwall were 

measured at the Guthrie County Bridge. The experimental results were extremely 

small compared to other displacement measurements obtained in this project, as 

previously shown in Figure 4.27. The analytical predictions for the relative rotation 
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between the PC girder at the location of the transducers and the abutment backwall 

were less than 0.0006° (10 microradians). 

6.2 Pile strains 

6.2.1 Pile flexural-bending strains 

The abutment pile near the acute-angle corner of the bridge deck had the 

largest y-axis, flexural-bending strains compared to those in the other piles in the 

respective abutment, which corresponded to the largest longitudinal displacement 

across the width of the abutment. The largest x-axis, flexural-bending strains were 

predicted in the piles near the ends of the abutments, since the transverse abutment 

displacements were largest at these locations. 

Pile strains were compared with the experimental data when reliable data was 

available over the time period for the maximum range of the average bridge 

temperature. The flexural-bending strain comparisons were made using the range 

of the experimental flexural-bending strains between the points in time of the 

maximum and minimum average bridge temperatures. A couple of piles had strain 

data that was reliable over a large range in the average bridge temperature, but did 

not have reliable data at the times of the maximum (July 20, 1998) and minimum 

(January 5, 1999) average bridge temperature. When continuous experimental 

flexural-bending strains were available for times corresponding to a range in the 

average bridge temperature of at least 100°F (56°C), they were also included in the 

pile strain study. The flexural-bending strains were minimally affected by small 

changes in average bridge temperature. This observation was especially true at the 
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south abutment where the abutment was nearly stationary for average bridge 

temperatures above 60°F (16°C). Table 6.4 shows the maximum average bridge 

temperatures range over which reliable pile flexural-bending strain data was 

available. 

The x- and y-axis, flexural-bending strain ranges predicted by the Guthrie, 

Series-A models are shown in Figures 6.5 and 6.6. In these figures, the first letter in 

the pile notation refers to the abutment (S for south, N for north) where the pile is 

located. The second letter refers to the pile location in the abutment (W for west, C 

for near the mid-width, and E for east). Maximum flexural-bending strains were 

induced in the pile when the displacement of the pile head was large and when the 

soil adjacent to the pile was the stiffest, i.e. the lower-bound backfill/upper-bound 

pile-soil conditions. Minimum flexural-bending strains occurred in the pile when the 

pile head displacement is small and the soil adjacent to the pile was not as 

restraining, i.e. the upper-bound backfill/lower-bound pile-soil conditions. 

The bridge construction plans show that the web of the abutment piles should 

be oriented parallel to the face of the abutment. However, due to a construction 

error, the near mid-width pile in the south abutment of the Guthrie County Bridge 

was orientated incorrectly. This pile was rotated approximately 25° clockwise from 

the correct orientation, as shown in Figure 6.7. This pile orientation induces 

essentially only y-axis, flexural-bending as a result of the longitudinal abutment 

displacement. The majority of the x-axis, flexural-bending in this pile was due to the 

transverse abutment displacement. 
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Table 6.4. Maximum average bridge temperature ranges over which reliable 
experimental pile strains were available at the Guthrie County Bridge 

(a) X-axis pile flexural-bending 
DEPTH COLDEST HOTTEST AVERAGE 
BELOW AVERAGE AVERAGE BRIDGE 

ABUTMENT PILE PILE CAP BRIDGE BRIDGE TEMP. 
(in.) TEMP. DATE TEMP. DATE RANGE (°F) 

South West 9 115199 7120198 113 
South West 33 NIA NIA NIA ---so-uffl - -center ___ ---9------115199- -------1120198 - - -- -··1n· 
South Center 33 3112198 6127198 100 -So-uth --Easf- ---9------ f\ilA --------NTA." ------- - ---N7A-
South East 33 NIA NIA NIA -- ---North -- -·we-sr-- 9-- ----175799 ___ ---772."o/98 ---------- - - 113 
North West 33 3112198 7120198 103 - -- North ---- ceiite-r - --9- - ----- ·175799- ------- - ·7125198- ------------- ---113-----
North Center 33 NIA NIA NIA 

(b) Y-axis pile flexural-bending 
DEPTH COLDEST HOTTEST 
BELOW AVERAGE AVERAGE 

ABUTMENT PILE PILE CAP BRIDGE BRIDGE 

South 
South ... -.--. ...... _. _____________ _ 

South 
South ------ south __ 
south 

- _ .. , ........ _____ ..... . 
North 
North .......... _ ----.-........... ______ ,,__ 

North 
North 

West 
West 

center 
Center ----Easr 
East 

. .... --,---·----·-·--·-·-----·--···· 
West 
West 
tenter 
Center 

(in.) TEMP. DATE TEMP. DATE 
9 NIA NIA 

33 NIA NIA 9 ----- - ---- 175799- - 7725198 
33 NIA NIA ...... --------··" 

9 NIA NIA 
33 NIA NIA 
9 - NIA NIA 

33 115199 7120198 9 -· 175799 ---------- 7720798 
33 NIA NIA 

AVERAGE 
BRIDGE 
TEMP. 

RANGE (°F) 
N/A 
NIA 

....... ·-- - . 

113 
NIA 
NIA 
NIA 
NIA 
113 
113 
NIA 
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Figure 6.5. Comparison of the x-axis, flexural-bending strains predicted by the 
Guthrie, Series-A models and the experimental measurements 
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Figure 6.7. Orientation of the pile near the mid-width of the south abutment at the 
Guthrie County Bridge 

Since the vertical rotation of the south abutment was overestimated in the 

Guthrie, Series-A models, the predicted y-axis, flexural-bending strains in the south 

abutment piles underestimated the experimental measurements. This error was 

expected since excess rotation of the abutment results in larger rotations at the pile 

head. The pile flexural-bending strains are decreased when the pile head rotates 

more freely than a fixed-pile head. 

For the Guthrie, Series-A models, the y-axis, flexural-bending strains in the 

north abutment piles had a good correlation with the experimental measurements. 

This strain correlation may indicate that the predicted north abutment rotations did 

not exceed the actual rotations. This hypothesis cannot be confirmed certainty since 

vertical abutment rotation was not experimentally measured at this abutment. 
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The x-axis, flexural-bending strains from the Guthrie, Series-A models had a 

good correlation with the experimental x-axis, flexural-bending strains for the piles in 

both abutments. 

The overestimation of the vertical rotation of the south abutment was 

corrected in the Guthrie, Series-B models. The y-axis, flexural-bending strains in the 

south abutment piles from the Guthrie, Series-B models are shown in Figure 6.8. 

Experimental y-axis, flexural-bending strain was only available at the top cross 

section of the pile near the mid-width of the south abutment. At this pile cross 

section, there is good correlation between the experimental and the Guthrie, Series

B y-axis, flexural-bending strains. Comparing the analytical results from Figure 6.6 

and 6.8 shows the effect of the abutment rotation on the y-axis, flexural-bending 

strains in the piles. The overestimated abutment rotation caused a discrepancy in 

the y-axis, flexural-bending strain that ranged from 100 to 200 microstrains. 

The analytical x- and y-axis, flexural-bending strains along the length of the 

west pile in the north abutment of the Guthrie County Bridge is shown in Figure 6.9. 

The flexural-bending strains in Figure 6.9 are the maximum flexural-bending strains 

in the pile cross section, which occurred at the flange tips. Data points for the 

experimental x-axis, flexural-bending strains extrapolated to the flange tips at 9 in. 

(230 mm) and 33 in. (840 mm) below the pile cap are included in Figure 6.9(a), 

which correspond to the plot of x-axis, flexural-bending strain versus time shown in 

Figure 4.29. The x-axis, flexural-bending strain for the lower cross section of this 

pile was only available for an average bridge temperature range of 103°F (57.2°C). 
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For the analytical models, the maximum, flexural-bending strains in the pile 

occurred at the pile cap, and an inflection point was located approximately 5 ft (1520 

mm) below the bottom of the pile cap. The maximum, flexural-bending strains in the 

pile below the inflection point were approximately 60% of the maximum, flexural

bending strain at the bottom of the pile cap. The flexural bending strains were 

negligible in the lower portion of the pile length. 

The maximum predicted x- and y-axis, flexural-bending strains at the flange 

tips for three piles across the width (east, near mid-width, and west) of each 

abutment and the pile in wingwalls at the acute-angle corner of the bridge deck are 

shown in Figure 6.10. The best estimate of the soil properties was used to predict 

the flexural-bending strains at the pile cap, i.e. the Guthrie, Series-A, Best-Soil 

model for all flexural-bending strains, except for the y-axis, flexural-bending of the 

piles in the south abutment which use the Guthrie, Series-B model. 

Longitudinal abutment displacements were the greatest at the acute-angle 

corners of the bridge deck. Hence, the largest pile strains were in the abutment 

piles near the acute-angle corner of the bridge deck. As predicted by the Guthrie, 

Series-A, Best-Soil model, the combined, flexural-bending strain of the east pile at 

the pile cap in the north abutment of the Guthrie County Bridge was approximately 

1800 microstrains. This predicted strain exceeded the yield strain for the A36 steel, 

which is equal to 1240 microstrains. At the pile cap, the west pile of the south 

abutment had an estimated combined, flexural-bending strain of about 750 

microstrains. The predicted, combined, flexural-bending strain of the northeast 
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Figure 6.10. Maximum predicted flexural-bending strains for the abutment piles at 
the Guthrie County Bridge 
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wingwall pile at the pile cap was about 1300 microstrains, the majority of this strain 

was due to y-axis, flexural-bending of that pile. 

6. 2. 2 Pile axial strains 

Changes in the pile axial strains were a daily phenomenon. As previously 

shown in Figure 4.8(b), the pile axial strains did not have a seasonal correlation with 

the average bridge temperature or abutment displacement. Figure 6.11 shows the 

range in the pile axial strains for four piles in the north abutment. The maximum 

experimental axial strain range was about 95 microstrains for the pile near the mid

width of the north abutment of the Guthrie County Bridge. In the abutment wall, the 

axial strain predicted by the Guthrie, Series-A, Best-Soil model for the NC pile was a 

tension strain of approximately 110 microstrains. The experimental axial strain 

results at other pile cross sections in the Guthrie County Bridge were inconclusive 

and were not included in the comparison study. 

Axial forces in the wingwall piles resist the vertical abutment rotation. The 

magnitude of the predicted axial strains in the NE wingwall pile was approximately 

five times larger than the predicted axial strains in the north abutment piles. 

Compressive axial strains are induced in the wingwall piles when the bridge 

expands. The axial strain for a typical wingwall pile is shown in Figure 6.11. 

6.3 Girder strains 

Strain gages were used to measure the strain gradient through the depth of 

the PC girders, as described in Section 4.4.2. The backfill passive-soil pressures 

and pile forces that act on the abutment backwall induce a moment in the bridge 
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Figure 6.11. Predicted axial strains for the abutment piles at the Guthrie County 
Bridge 

superstructure. If the bridge is assumed to be a continuous structure with three 

equal spans, the moment at the interior supports (piers) will be 20% of the applied 

moment at the end supports (abutments). The strain gradient in the girders near the 

abutment are noticeably larger than those recorded near the piers, as shown in 

Figure 4.32. 

Internal restraining strains due to stress, i'.Estress. as given in Equation 3.3, 

were induced in the PC girders due to the difference between the unrestrained free 

temperature strains and the actual final strain profile through the depth of the 

superstructure [8]. The theoretical strain profiles through the depth are shown in 

Figure 6.12. The vertical temperature gradient and the unrestrained free 
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temperature strains, i'lEtemp. have a nonlinear distribution through the depth of the 

superstructure as shown in Figures 6.12(b) and 6.12(c). The vertical temperature 

gradient was assumed to be bilinear as discussed in Chapter 4. Also recall that the 

a-coefficient of the deck concrete was greater than that of the PC girders at the 

Guthrie County Bridge. The final strain profile was assumed to be linear according 

to the plane sections remain plane after bending assumption as shown in Figure 

6.12(d). The shaded areas in Figure 6.12(e) indicate the internal restraint strains 

due to stress. Typically, compressive strains are expected in the deck while tensile 

strains are expected in the girders. 

The girder strain gradient ranges from the Guthrie, Series-A models are 

shown in Figure 6.13. The absolute values of the strain gradients are presented in 

Figure 6.13. The strain ranges shown in Figure 6.13 are for total strains in the PC 

girders. The ranges of the strain gradient in the PC girders from the Guthrie, Series

A models were larger than the experimental PC girder strain gradients, which was 

attributed to the abutment rotation discrepancy described in Section 6.1.3. The PC 

girder strain gradients from the Guthrie, Series-B models shown in Figure 6.14 had a 

better correlation with the experimental data than the Guthrie, Series-A PC girder 

strain gradients. Since the vertical rotation was not measured at the north abutment, 

the Guthrie, Series-B model cannot be used for the prediction of girder strains near 

the north abutment. 
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Figure 6.12. Strains through the depth of the bridge superstructure (adapted from 
[8]) 
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Figure 6.13. Comparison of the PC girder total-strain gradient predicted by the 
Guthrie, Series-A models and the experimental measurements 
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Predicted PC girder strains in the south span of the Guthrie County Bridge 

are provided in Figure 6.15, as predicted using the Guthrie, Series-B, Best-Soil 

model. The predicted strains shown in Figure 6.15 were due to stresses in the 

girder. The flexural-bending strains shown in Figure 6.15(a) are for the extreme top 

fiber of the girders. The maximum combined axial and flexural-bending strain in the 

top flange of the PC girder was approximately 170 microstrains in tension in the east 

girder near the south abutment of the Guthrie County Bridge. Using Hooke's Law 

with a modulus of elasticity for concrete as provided in Table 5.1, this strain is 

equivalent to a stress of about 0.750 ksi. 
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Figure 6.15. Girder strains due to stress in the east span as predicted by the 
Guthrie, Series-B, Best-Soil model 
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7 ANALYTICAL STUDY AND INTERPRETATION OF EXPERIMENTAL RESULTS 

FOR THE STORY COUNTY BRIDGE 

7 .1 Bridge displacement 

Thermal bridge length changes were investigated using the Story County 

Bridge finite-element model in the same manner as was performed for the Guthrie 

County Bridge finite-element models. The a-coefficients of the concrete members 

and other material properties of the Story County Bridge are provided in Table 5.1. 

The applied temperature distribution on the bridge structure was discussed in 

Section 5.4 of this report. 

The Story County Bridge model calibration involved matching the analytical 

and experimental abutment displacements for the time period with the largest range 

in average bridge temperatures. At the time of this report, filtered experimental data 

from the Story County Bridge was available for all gages from August 1998 to July 

1999. The applied temperatures corresponded to the temperature change from the 

time of the coldest average bridge temperature (January 5, 1999, 2:00 a.m.) to the 

time of the hottest average bridge temperature (July 5, 1999, 4:00 p.m.). The 

experimental average bridge temperature range was 110°F (61°C) between these 

times. 

7.1. 1 Longitudinal abutment displacements and change in bridge length 

A smaller difference in the magnitude of the longitudinal displacements 

between the abutments was experimentally measured at the Story County Bridge 

than at the Guthrie County Bridge. The west abutment displaced approximately 



www.manaraa.com

164 

25% further longitudinally than the east abutment at this bridge. Less water was 

encountered in the soil under the Story County Bridge abutments. The backfill was 

considered dry behind both abutments. 

As was done with the Guthrie models, two series of finite-element models 

were used for the analysis of the Story County Bridge. The Story, Series-A models 

used the maximum a-coefficient since the dry a-coefficient underestimated the 

actual change in bridge length of the Story County Bridge. The Story, Series-B 

models, in which the abutment rotation was adjusted to match the experimental 

measurements, used the dry a-coefficient. 

For the Story, Series-A, Best-Soil model, the initial slope of the east abutment 

backfill, Seast. was equal to 344, which is slightly less than the initial slope for the 

lateral stiffness relationship of a dry granular medium-dense soil as defined by the 

Clough and Duncan design curves (Figure 5.B(c)). The initial slope value of the west 

abutment backfill, Swest. was equal to 261 for a dry granular soil, which is halfway 

between that of a loose and medium-dense soil. 

Acceptable limits on the abutment displacement errors were the same for the 

Story County Bridge and the Guthrie County Bridge finite-element models. The 

Story, Series-A, Best-Soil model had displacement errors of less than 2% compared 

to the experimentally measured longitudinal displacements at the mid-width of the 

east and west abutments. The transverse displacement was within 10% of the 

experimentally measured displacement at the south corner of the east abutment. 

As discussed in Section 6.1.1, upper and lower-bound soil stiffness models 

were developed by varying the lateral stiffness of the abutment backfill and the soil 
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supporting the piles. The Story County Bridge bound models incorporated a fixed 

change in stiffness for the soil adjacent to the piles and the stiffness of the backfill at 

the both abutments. A summary of the backfill stiffness and the change in bridge 

length for the Story, Series-A finite-element models is shown in Table 7.1. 

Longitudinal displacements were experimentally measured at three locations 

across the width of the east abutment, but only at the mid-width location of the west 

abutment. A comparison of the analytical and experimentally measured longitudinal 

abutment displacements across the width of the abutment is shown in Figure 7.1. 

The largest abutment displacement of the four bound models is referred to as the 

maximum in Figure 7.1. The maximum displacement occurred under the loosest soil 

conditions (lower-bound backfill/lower-bound pile-soil). Conversely, the minimum 

abutment displacement shown in Figure 7 .1 occurred under the stiffest soil 

conditions (upper bound backfill/upper bound pile-soil). The abutment displaced 

Table 7.1. Change in bridge length predicted by the Story, Series-A models 

STORY, SERIES-A MODEL 

sesf=soif ·········· ·· ··········· 
Lower-bound backfill/lower

bound pile-soil 
Upper-bound backfill/upper

bound pile-soil 
Upper-bound backfill/lower

bound pile-soil 
Lower-bound backfill/upper

bound pile-soil 
Experimental 

Seast 

344 

172 

515 

515 

172 

Swest 

261 

131 

392 

392 

131 

CHANGEIN CHANGE 
FROM 

BRIDGE BEST-SOIL 
LENGTH (in.) f'v1Ql:)EL(o(o) ··········· ·a:9a4 

1.039 +7.8 

0.901 -6.5 

0.919 -4.7 

1.015 +5.3 

0.960 
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Figure 7.1. Comparison of the longitudinal abutment displacements between those 
predicted by the Story, Series-A models and the experimental 
measurements at the Story County Bridge 
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further longitudinally at the acute-angle edge of the bridge deck than at the obtuse

angle edge in the analytical models. Experimental measurements at the south 

corner of the east abutment were not reliable over the entire time period between 

January 5, 1999 and July 5, 1999, and are not included in Figure 7.1. 

7.1.2 Transverse abutment displacement 

At the east abutment of the Story County Bridge, experimentally measured 

transverse abutment displacements were only reliable at the acute-angle edge of the 

bridge deck. The transverse abutment displacement of the Story models was 

calibrated using this measurement. The transverse abutment displacement in the 

Story models was too large using Barkan's [36] recommendation for the transverse 

backfill stiffness, which was equal to one-half of the stiffness of the normal backfill 

springs. Barkan's recommendation for transverse backfill stiffness was also too low 

for the Guthrie County Bridge finite-element models. The ratio of the tangential 

spring stiffness to normal spring stiffness was 0.85 for the Story, Series-A, Best-Soil 

model. 

A summary of the transverse abutment displacements is shown in Figure 7.2. 

The experimentally measured range of the transverse displacements at the south 

corner of the east abutment is also provided in Figure 7.2. Experimentally measured 

transverse abutment displacements were not reliable at the north corner of the east 

abutment, and were not monitored and both corners of the west abutment of the 

Story County Bridge. 
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7. 1.3 Abutment rotation in a vertical plane 

The Story, Series-A, Best-Soil model overestimated the east abutment 

rotations in a vertical plane parallel to the longitudinal axis of the bridge by a factor of 

two, as was also encountered in the Guthrie, Series-A models. Again, the cause for 

the abutment rotation discrepancy was not determined. To determine the 

consequences of the discrepancy between the predicted and experimentally 

measured abutment rotations, the Story, Series-B models were developed. In these 

models, rotational constraints were applied to the element nodes for the east 

abutment to cause the magnitude of the analytical abutment rotations to equal the 
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experimental abutment rotations. The experimentally measured rotations of the east 

abutment of the Story County Bridge had a range of approximately 0.065° (1130 

microradians). The west abutment rotations were not experimentally monitored. 

The Story, Series-B models had a stiffer abutment backfill than the Story, 

Series-A models. The calibrated initial slope for the lateral stiffness relationship of 

the east abutment backfill, Seast. in the Story, Series-B, Best-Soil model was equal to 

604, which is slightly greater than the initial slope of a dry granular medium-dense 

soil. 

The four bounding models as previously described in Section 6.1.1 (lower

bound backfill/loose-bound pile-soil, upper-bound backfill/upper-bound pile-soil, 

upper-bound backfill/lower-bound pile-soil, and lower-bound backfill/upper-bound 

pile-soil) were used to determine the minimum and maximum limits for the y-axis, 

flexural-bending strain of the east abutment piles. The x-axis, flexural-bending was 

only slightly affected by the abutment rotation. Therefore, these strains were not 

investigated with these models. The changes in longitudinal abutment displacement 

for the Story, Series-B models are shown in Table 7.2. 

7. 1.4 Relative displacements at the piers 

Fixed pier details, as shown in Figure 5.3(a), were specified for both piers at 

the Story County Bridge. As discussed in Section 5.1, the pier diaphragm and the 

pier cap elements shared nodes at the bearing point, negating relative translation at 

this location in the Story County Bridge finite-element models. The experimental 

measurements for the relative pier displacements are shown in Figure 4.25. 
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Table 7.2. Change in bridge length predicted by the Story, Series-B models 

CHANGEIN CHANGE 
FROM 

BRIDGE BEST-SOIL 
STORY, SERIES-B MODEL Seast Swest 

LENGTH (rn.) . fv10DEL (%) · -·--······---·-·· BeS!-san --- --- ·· -- -- 664 _______ 4ao ·--··· · ---o:9es 
Lower-bound backfill/lower

bound pile-soil 
Upper-bound backfill/upper

bound pile-soil 
Upper-bound backfill/lower

bound pile-soil 
Lower-bound backfill/upper

bound pile-soil 
Experimental 

302 

907 

907 

302 

240 

720 

720 

240 

1.006 +3.9 

0.932 -3.7 

0.937 -3.2 

1.001 +3.4 

0.960 

The experimentally measured relative pier displacement was less than 0.040 in. (1.0 

mm) at both piers of the Story County Bridge. 

7.1.5 Relative displacements at the abutment 

The relative rotation was measured between the pile cap of the east abutment 

and a point on a pile that is 18 in. (460 mm) below the pile cap at the Story County 

Bridge. Referring back to Figure 4.26, the experimental range of relative pile 

rotations was approximately 0.168° (2930 microradians). As discussed in Section 

4.3.5, the experimentally measured relative pile rotations were questionable. As 

shown in Figure 7.3, the predicted relative pile rotations from the Story, Series-A 

models underestimated the experimentally measured relative pile rotations. The 

predicted relative pile rotations from the Story, Series-B model were larger than the 

results of the Story, Series-A models, but still underestimated the experimental 

measurement. The Story County Bridge had larger relative pile rotations than 

predicted analytically and experimentally measured at the Guthrie County Bridge. 
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Figure 7.3. Comparison of predicted relative pile rotations and the experimental 
measurements at the Story County Bridge 

This may be caused by the stiffer soil conditions along the upper portion of the pile 

at the Story County Bridge. The reader should recall that the pre-bored holes 

through which the piles were driven were filled with sand at the Story County Bridge, 

compared to a bentonite slurry that filled the pre-bored holes at the Guthrie County 

Bridge. 

7.2 Pile strains 

7.2. 1 Pile flexural-bending strains 

As described in Section 6.2, pile strains were compared with the experimental 

data when reliable data was available over the time span of the maximum range of 
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average bridge temperatures. The strain gages on the abutment piles at the Story 

County Bridge had a better rate of success than the strain gages on the abutment 

piles at the Guthrie County Bridge. Table 7.3 shows the maximum ranges of 

average bridge temperature over which reliable flexural-bending strain data was 

available for the abutment piles at the Story County Bridge. 

The ranges of the x- and y-axis, flexural-bending strains for the abutment 

piles as predicted by the Story, Series-A were compared to the experimentally 

measured strains, as shown in Figures 7.4 and 7.5. In these figures, the first letter in 

the pile notation refers to the abutment (E for east, W for west) where the pile is 

located. The second letter refers to the pile location in the abutment (N for north, C 

for center, and S for south). As discussed in Section 6.2.1, the models that 

incorporated the lower-bound abutment backfill stiffness and the upper-bound 

stiffness for the soil supporting the piles predicted the maximum, flexural-bending 

strains. Conversely, the models that used the upper-bound abutment backfill 

stiffness and the lower-bound stiffness for the soil supporting the piles predicted the 

minimum, flexural-bending strains in the abutment piles. 

The orientation of the abutment piles in the abutment pile cap was the same 

for both the Story County Bridge and Guthrie County Bridge, with the webs of the 

piles oriented parallel to the abutment face. The Story County Bridge has a 15° 

skew angle, which is smaller than the 30° skew angle at the Guthrie County Bridge. 

The ratio of y-axis to x-axis, flexural-bending strains in the abutment piles was larger 

at the Story County Bridge than at the Guthrie County Bridge because of the smaller 

skew angle. 
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Table 7.3. Maximum average bridge temperature ranges for which reliable 
experimental pile strains were available at the Guthrie County Bridge 

(a) X-axis pile flexural-bending 
DEPTH COLDEST HOTTEST AVERAGE 
BELOW AVERAGE AVERAGE BRIDGE 

ABUTMENT PILE PILE CAP BRIDGE BRIDGE TEMP. 
(in.) TEMP. DATE TEMP. DATE RANGE (°F) 

West Center 9 NIA NIA NIA 
West Center 33 115199 8120199 108 ······---East --Nortil··-----9· --------115199·- -·---775799·- ······-···--- 110 
East North 33 115199 715199 110 --East _____ center--------9---- ·--·-115/99·-----715799· ······115······ 
East Center 33 NIA NIA NIA ---East ______ soi.iH1___ 9-- ---fis799 ____ .. ·715799 ····· --- ········· r10· 
East South 33 115199 8120199 108 

(b) Y-axis pile flexural-bending 
DEPTH 
BELOW 

ABUTMENT PILE PILE CAP 
(in.) 

West Center 9 
West Center 33 ······· -East ····· -- Nortll ·······- 9 

East North 33 
East 
East 

... - - --· ·--·-----

East 
East 

""""'"""""" "----·-····· 
Center 9 
Center 33 ........ - ---........... ____ ............. _ ----....... -·- - ----.-·--· .. ·--
South 9 
South 33 

COLDEST HOTTEST 
AVERAGE AVERAGE 
BRIDGE BRIDGE 

TEMP.DATE TEMP. DATE 
115199 6125199 
115199 715199 

AVERAGE 
BRIDGE 
TEMP. 

RANGE (°F} 

175i99 ...... - 775199 . . . .. ··········· 
106 
110 
110 
110 
110 
110 

115199 715199 ...... --- ---····· -··--------. .--
115199 715199 
115199 715199 

. 175i99 715199 
·- - "" ....... ----,"""" 

110 
NIA NIA NIA 
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Figure 7.4. Comparison of the x-axis, flexural-bending strains predicted by the 
Story, Series-A models and the experimental measurements 
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The x-axis, flexural-bending strains predicted by the Story, Series-A models 

had a good correlation with the experimentally measured flexural-bending strains at 

the center and south piles in the east abutment. The predicted, x-axis, flexural

bending strains at the north pile of the east abutment underestimated the 

experimentally measured strains. The transducer that measured the transverse 

abutment displacements at this corner did not function properly. Therefore, the 

transverse displacement could not be calibrated in these finite-element models. The 

underestimated x-axis, flexural-bending strain predicted at this pile may indicate that 

the finite-element model may have underestimated the transverse displacement at 

the north corner of the east abutment. 

As discussed in Section 6.2, the overestimation of the abutment rotations in a 

vertical plane parallel to the longitudinal axis of the bridge leads to an 

underestimation of the flexural-bending strains about the y-axis of the abutment 

piles. The abutment rotations were experimentally measured at the east abutment 

of the Story County Bridge. As shown in Figure 7.5, the y-axis, flexural-bending 

strains predicted by the Story, Series-A models underestimated the experimentally 

measured y-axis, flexural-bending strains for the piles at this abutment. The 

abutment rotations had a negligible effect on the x-axis, flexural-bending strains in 

the abutment piles. 

The predicted y-axis bending strains at the center pile in the west abutment 

had a better correlation with the experimentally measured y-axis, flexural-bending 

strains. This may indicate that the west abutment rotation predicted by the Story, 

Series-A models had a good correlation with the actual rotation of this abutment. 
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This hypothesis cannot be confirmed since the abutment rotations were not 

measured at the west abutment of the Story County Bridge. 

The overestimation of the vertical rotation of the south abutment was 

corrected in the Story, Series-B models. The y-axis, flexural-bending strains for the 

piles in the east abutment predicted by the Story, Series-B models are shown in 

Figure 7.6. These predicted strains had a better correlation with the experimentally 

measured y-axis, flexural-bending strains than did those predicted by the Story, 

Series-A models. 

The variation of the flexural-bending strains along the length of the pile at the 

flange tips of the north pile in the east abutment is shown in Figure 7.7. The 

predicted minimum, maximum, and best-soil pile bending strains are shown in 

Figure 7.7. In Figure 7.7(b), the experimentally-measured, y-axis, flexural-bending 

strains were extrapolated to the flange tips. The maximum flexural-bending strains 

occurred at the pile cap. The inflection point for both the x- and y-axis, flexural

bending strains was located approximately 5 ft (1520 mm) below the pile cap. 

Flexural-bending strains were negligible in the lower portion of the pile length. 

The maximum, predicted, flexural-bending strains that occurred at the flange 

tips for three piles along the width of each abutment at the Story County Bridge are 

shown in Figure 7.8. The best estimate of the soil properties was used to predict the 

flexural-bending strains in the abutment piles, i.e. the Story, Series-A, Best-Soil 

model for all flexural-bending strains except for the y-axis, flexural-bending strains 

for the piles in the south abutment. The Story, Series-B, Best-Soil model was used 

to predict the y-axis, flexural-bending strains for the piles in the south abutment. 
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Since the difference between the longitudinal abutment displacements at the 

Story County Bridge was small, there was only a small difference between the 

flexural bending strains of the piles in the east and west abutments at the Story 

County Bridge. The maximum, combined, flexural-bending strain predicted in the 

south pile in the east abutment of the Story County Bridge was approximately 1100 

microstrains. This predicted strain is only slightly less than the yield strain for A36 

steel, which is about 1240 microstrains. 

7.2.2 Pile axial strains 

Axial strains that were predicted by the Story, Series-B models for three piles 

in the east abutment are shown in Figure 7.9. A compressive axial strain was 

predicted for the exterior abutment piles, while the interior pile had a negligible 

increase in axial strain. The maximum axial strain was located in the exterior pile in 

the east abutment at the acute-angle edge of the bridge deck, which was equal to a 

compressive strain of approximately 100 microstrains. Similar results were 

experimentally obtained by Lawver, French and Shield (13]. These researchers 

found that the axial strains in the exterior abutment piles decreased while the strain 

in an interior pile increased. 

The experimentally measured axial strain for the piles at the Story County 

Bridge were questionable and were not compared with the analytical results shown 

in Figure 7.9. The dummy gage installed at the Story County Bridge produced 

strains that did not correlate with temperature after the first week of December 1998, 

and the results from this gage were considered unreliable after that time. Before this 

time, the experimentally measured axial strain ranges were generally less than 100 
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Figure 7.9. Predicted axial strains for the abutment piles at the Story County Bridge 

microstrains. Daily variations of the pile axial strains were approximately 50 

microstrains. 

Unlike the Guthrie County Bridge, piles were not located under the abutment 

wingwalls at the Story County Bridge. 

7.3 Girder strains 

The analytically predicted and experimentally measured ranges for the PC 

girder total-strain gradients are shown in Figures 7.10 and 7.11. As was the case 

with the Guthrie, Series-A models, the Story, Series-A models overestimated the 

experimentally measured total-strain gradient in the PC girders. The strain gradient 
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Figure 7 .10. Comparison of the PC girder total-strain gradient predicted by the 
Story, Series-A models and the experimental measurements 
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Figure 7 .11. Comparison of the PC girder total-strain gradient predicted by the 
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in the PC girders is affected by the rotation of the abutment in a vertical plane 

parallel to the longitudinal axis of the bridge. Larger abutment rotations result in 

larger girder bending strain gradients. As shown in Figure 7.11, the total-strain 

gradient predicted by the Story, Series-B models had a better correlation with the 

experimentally measured total-strain gradients in the east span of the bridge than 

did those that were predicted Story, Series-A models. Since the abutment rotation 

was not experimentally measured at the west abutment, the abutment rotation could 

not be applied to this abutment and hence the Story, Series-B models could not be 

used to predict the girder strains in the west span. 

Strains due to stress for the PC girders in the east span were predicted by the 

Story, Series-B models. The predicted girder strains due to stress are shown in 

Figure 7.12. The flexural-bending strains shown in Figure 7.12(a) are for the 

uppermost fiber in the top flange of the girders. In the Story finite-element models, 

the axial strains in the girder counteracted the bending strains at the top flange of 

the girders. The maximum combined strain due to stress predicted for the top flange 

was approximately 110 microstrains in tension, which is equivalent to a stress of 

about 0.450 ksi. The axial strains were additive with the flexural-bending strains at 

the bottom flange of the girder. The maximum combined strain due to stress 

predicted for the bottom flange was approximately 200 microstrain in compression, 

which is equivalent to a stress of about 0.800 ksi. 
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8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary 

Two, in-service, skewed, integral abutment bridges subjected to thermal 

expansion and contraction were studied. The research program involved an 

experimental monitoring program and a finite-element analysis study for the integral

abutment bridges that were located in Guthrie and Story Counties in the State of 

Iowa. Field instrumentation included devices that measured bridge temperatures, 

displacements, and strains as the bridges experienced daily and seasonal changes 

in temperature. Presented in this thesis is the experimental data that was collected 

and analyzed for a period of 27 and 12 months at the Guthrie County Bridge and 

Story County Bridge, respectively. Finite-element models were created for each 

bridge using the ANSYS finite-element analysis program. The experimentally 

measured bridge temperatures were applied to the analytical bridge models. The 

soil stiffness behind the abutment and surrounding the piles was adjusted until the 

predicted abutment displacements matched the experimental abutment 

displacements. Analytically predicted pile and girder strains were compared with the 

experimental measurements to determine the validity of the finite-element models. 

These models were used to predict maximum pile and PC girder strains due to the 

thermal loading at the Guthrie and Story County Bridges. 
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8.2 Conclusions 

The experimentally measured range in the average bridge temperatures was 

113°F (63°C) and 114°F (63°C) for the Guthrie County Bridge and the Story County 

Bridge, respectively. Significant vertical temperature gradients were measured 

through the depth of the superstructure during the summer months. Slightly 

negative vertical temperature gradients were observed overnight during the winter 

months, i.e., the top of slab temperature was lower than the girder temperature. 

Experimentally measured changes in bridge length correlated well with the 

change in average bridge temperature. Unsymmetrical longitudinal abutment 

displacements were measured at both bridge sites, with a significant difference 

observed at the Guthrie County Bridge. The range of the north abutment 

longitudinal displacement was twice as large as that measured at the south 

abutment. At the Story County Bridge, the west abutment displaced approximately 

25% further than the east abutment over the 12-month measurement cycle. Plan

view rotation of the south abutment was noted at the Guthrie County Bridge. Both 

bridges, transverse abutment displacements were small compared to the 

longitudinal abutment displacements. The transverse movement of the south 

abutment at the Guthrie County Bridge was toward the obtuse-angle edge of the 

abutment. Small abutment rotations in a vertical plane were measured at both 

bridges. Also, small superstructure displacements over the pier caps were recorded 

at both bridges. Daily variations of the relative displacement of the superstructure 

over the pier caps were larger in the summer than in the winter. 
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Strain gages installed at the bridge sites indicated that the HP-shaped steel 

piles and the PC girders developed flexural-bending strains as a result of the daily 

and seasonal thermal movements of the bridges. Biaxial, flexural-bending strains 

were noted in the monitored abutment piles at each bridge. The magnitudes of the 

flexural-bending strains had a good correlation with the magnitudes of the abutment 

displacements. Combined, flexural-bending strains measured at 9 in. (230 mm) 

below the pile cap approached the yield strain of A36 steel. These strains combined 

with the axial strains induced by the deal load of the superstructure indicate that 

compression yielding has developed in a pile cross section. The strain gages 

installed on the PC girders indicated that the girder curvature was larger near the 

abutments than near the piers. 

With the exception of the electrical-resistance strain gages installed on the 

abutment piles, the instrumentation used for the experimental field studies 

performed well. For the strain gages on the abutment piles, much of the strain gage 

wiring had been infiltrated with moisture that caused erroneous strain readings. The 

vibrating-wire strain gages installed on the PC girders at the Story County Bridge 

were very reliable over the duration of the experimental monitoring. The string

potentiometer, displacement transducers mounted on the post benchmarks provided 

an effective method for measuring abutment displacements for long-term studies. 

Longitudinal displacements predicted by the finite-element models were 

successfully calibrated using the corresponding experimental displacement 

measurements. The lateral stiffness of the soil backfill behind the abutments was 

approximately equal to the lateral stiffness of a medium-dense, granular backfill as 
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defined by Clough and Duncan [14]. A good correlation was obtained between the 

analytically predicted and experimentally measured relative displacements at various 

locations on the bridges. However, the finite-element models overestimated the 

abutment rotation in the vertical plane parallel to the longitudinal direction of the 

bridge. 

The finite-element predictions for the pile strains had a good correlation with 

the experimentally measured pile strains. The flexural-bending strains in the 

abutment piles were the largest at the pile cap, decreasing in magnitude along the 

pile length. Translation of the abutment created double-curvature bending in the 

piles. An inflection point in the elastic curve for the displaced pile was predicted to 

occur approximately 60 in. (1500 mm) below the bottom of the pile cap. At the 

Guthrie County Bridge, the predicted, combined, flexural-bending strains in one of 

the flanges of the piles at the abutment pile cap exceeded the minimum yield strain 

for A36 steel. The predicted, combined, flexural-bending strains in one of the 

flanges for each of the abutment piles at the Story County Bridge were 

approximately equal to the minimum yielding strain for A36 steel. When the axial 

strain induced by the dead load of the bridge is included in the total strain for the 

piles, a portion of the abutment pile cross-section yields in compression. Except for 

the wingwall piles in the Guthrie County Bridge, the axial strains in the abutment 

piles that were induced by the thermal movements of the abutments were small. 

However, significant axial compressive strains were predicted for the wingwall piles 

when thermal expansion occurred for this bridge. 
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A good correlation was achieved between the analytically predicted and 

experimentally derived strain gradients in the PC girders. The finite-element models 

were used to predict strains due to stresses in the PC girders. Larger flexural

bending strains occurred in the PC girders near the abutments than near the piers. 

The maximum concrete strain in the PC girders induced by the thermal bridge 

movements was approximately 200 microstrains. 

8.3 Recommendations 

For the Story County Bridge, the filtering and analysis of the experimental 

data needs to be completed for the monitoring period from July 1999 to April 2000. 

A final report containing the final experimental results will be presented to the Iowa 

Department of Transportation in the fall of 2000. A design model for integral 

abutment bridges with steel HP-shaped abutment piles and PC girders will be 

presented in that report. 

Since only two bridges were instrumented, these results cannot be 

considered representative of all integral-abutment bridges of similar geometry. 

Further experimental studies can contribute to a better understanding of these types 

of bridges. Other integral-abutment bridges that could be investigated include 

bridges with: steel girders, different total length and span lengths, different skew 

angles, and abutments supported by PC piles. Strains induced in the piles 

supporting the abutment wingwalls should be experimentally monitored. Steps 

should be taken in future Jong-term monitoring projects to minimize gage Joss. 

Moisture infiltration needs to be prevented at the location of the strain gages and at 
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any splices in the wiring for any instrumentation device. Additional information could 

be obtained through the use of soil pressure transducers to measure soil pressures 

acting on the abutment wall and on embedded piles. The use of these types of 

gages is limited, since they need to be installed before the backfill has been placed. 

Future finite-element studies of integral-abutment bridges should focus on the 

soil interaction with the abutment wall and the abutment piles. More information 

about the in-situ backfill soil behind the abutment and the soil surrounding the piles 

should be obtained for future finite-element studies. Non-linear soil springs to model 

the lateral stiffness of the soil should be incorporated into finite-element models. A 

more in-depth analysis should be investigated regarding the abutment rotation in the 

vertical plane parallel to the longitudinal direction of the bridge. To determine the 

effect on the bridge displacements and induced strains in the bridge members, other 

parameters should be investigated, including: varying the bridge geometry, varying 

the a-coefficient of the concrete members, varying the thermal loading conditions, 

and incorporating steel girders instead of PC girders. 
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APPENDIX A - EXPERIMENTAL MONITORING PROGRAM 

The following section details the experimental monitoring program used at the 

Guthrie County Bridge and the Story County Bridge, which is taken directly from 

Chapter 3 of the thesis written by Matt Thomas [26]. This excerpt is reproduced with 

the permission of Matt Thomas. 

A.1 Overview 

The primary objective of the research was to measure thermal movements of 

two bridge superstructures and strains in bridge elements due to restraints imposed 

by soil and structure indeterminacy. Two bridges were instrumented to measure the 

in-service displacements and stresses caused by thermal loading. The 

instrumentation installed at each bridge site consisted of displacement transducers 

and a tiltmeter to measure bridge movements, strain gages to measure strains, and 

thermocouples to measure temperature. 

A. 1. 1 Bridge selection 

The bridges selected for the filed study needed to satisfy many criteria. The 

desirable characteristics for the bridges included: 

• U-shaped integral abutment pile arrangement for one bridge 

• Straight integral abutment pile arrangement for one bridge 

• Prestressed concrete girders 

• HP-shaped steel piling 

• Long bridge length - for maximum abutment displacements 
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• High skew angle - for maximum transverse movements 

• Low flooding potential - to minimize risk to electronic instrumentation 

• Symmetry - less instrumentation required if behavior was symmetric 

• Low traffic volume - to minimize disturbance of traffic during 

instrumentation installation and to minimize traffic effects on data readings 

• Earth berm - for easier access to the abutment piles 

• Reasonably close proximity to Iowa State University 

The Iowa Department of Transportation database of bridges on the primary 

road system was searched and a letter was written to each of the 99 county 

engineering offices in Iowa requesting potential to identify all possible integral 

abutment bridges for the field study. Site visits were made to several potential 

bridges. The two selected bridges had the best combination of favorable attributes 

and satisfied the project requirements concerning the abutment pile configuration 

and PC girder construction. 

A. 1. 2 Bridge descriptions 

Both of the selected bridges were county bridges in central Iowa on the 

secondary roads system. The first bridge that was instrumented was located in 

Guthrie County, just south of the town of Panora on Route P28 and crossing the 

Middle Raccoon River. The second bridge that was instrumented for this project 

was located just northwest of Ames in Story County on Route E26 over Squaw 

Creek. 
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The Guthrie County Bridge is a three span, continuous, PC girder bridge with 

a right-ahead skew of 30° and total length of 318 ft (96.93 m). This bridge has a U

shaped abutment pile arrangement with a single row of 10 HP1 Ox42 steel piles 

under the backwall and an HP1 Ox42 pile under each wingwall. The piles under the 

backwall were oriented with their webs parallel to the abutment face. The wingwall 

piles were oriented with the webs perpendicular to the bridge longitudinal axis. The 

piles were to be driven to shale bedrock and to a depth of at least 45 ft at the south 

abutment and 40 ft at the north abutment. Prebored holes filled with a bentonite 

slurry were specified for the piles at this bridge. The two Tee-shaped piers are 

supported by a RC footing keyed into shale bedrock. At the south pier, the bridge 

superstructure rests on 3. 75 in.-thick steel-reinforced neoprene pads. The partial

height pier diaphragm at this pier does not extend down to the top of the pier. At the 

north pier, the pier diaphragm was cast into a keyway that was lined with expansion 

joint filler. The superstructure is supported by thinner, 1 in.-thick, neoprene pads at 

this pier. A summary of the geometric characteristics of the Guthrie County Bridge is 

provided in Table A.1. 

The Story County Bridge is a three span, 201 ft - 4 in. (61.36 m), continuous, 

PC girder bridge with a right-ahead skew of 15°. Each abutment is supported on a 

single row of seven HP1 Ox42 steel piles, oriented with the webs parallel to the 

abutment face. The wingwalls are cantilevered straight back of the abutment 

backwall. The abutment piles were to be driven to bedrock or a minimum of 34 



www.manaraa.com

196 

Table A.1. Characteristics of the instrumented bridges 
GUTHRIE COUNTY 

BRIDGE 
Total bridge length 318 ft. - 0 in. (96.9 m) 

Spans 

Skew 

Abutment pile arrangement 

# of piles per abutment 

Bridge orientation 

PC girders (number/type) 

Pier type 

Bridge width 

105.75, 106.5, 105.75 ft. 
(32.2, 32.5, 32.2 m) 

30° 

LI-shaped 

12 

North-south 

5 girders, Iowa D 

Tee pier 

30 ft. (9.1 m) 

STORY COUNTY 
BRIDGE 

201 ft. - 4 in. (61.4 m) 

64.08, 73.17, 64.08 ft 
(19.5, 22.3, 19.5 m) 

15° 

Single row 

7 

East-west 

5 girders, Iowa C 

Pedestal pier 

30 ft. (9.1 m) 

tons/pile. The specified length of the abutment piles was 40 ft. Eight foot deep 

prebored holes filled with sand were provided for each abutment pile. The pedestal-

type piers consisted of a single line of 12 HP10x42 steel piles encased by concrete. 

The bridge superstructure was supported at the piers by 1 in.-thick, neoprene pads. 

The full-depth pier diaphragms were cast into keyways in the pier cap that were lined 

with expansion joint filler. A summary of the geometric characteristics of the Story 

County Bridge is included in Table A.1. 

A. 1.3 Instrumentation packages 

To quantify the displacements and stresses experienced by the bridges and 

their foundations due to thermal loads, instrumentation packages for long term field 

monitoring were developed. The instrumentation devices chosen for the project 

were selected to provide meaningful and useful information about the in-service 
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Table A.2. Summary of experimental results obtained 

MEASUREMENT 

Longitudinal abutment 
displacements 

Transverse abutment 
displacements 

Strains in steel piling 
PC girder strains 

Displacements of a pile relative 
to RC pile cap 

Vertical temperature gradient 
through superstructure 

Relative displacements of bridge 
superstructure over piers 

Concrete strains in pile cap 

GUTRIE COUNTY 
BRIDGE 

Each abutment 

One abutment 

Five piles 

Eight locations 

One pile location 

12 locations 

Each pier 

One abutment 

STORY COUNTY 
BRIDGE 

Each abutment 

One abutment 

Four piles 
Six locations 

One pile location 

14 locations 

Each pier 

One abutment 

behavior of the integral abutment structure. Table A.2 lists the effects that were 

measured for each bridge. 

To measure bridge movements, string-type displacement transducers and a 

tiltmeter were used at each bridge site. Several displacement transducers were 

mounted on benchmark posts that were installed to measure absolute abutment 

displacements. Displacement transducers were also mounted on the bridge 

structures to record differential displacements between bridge elements. Weldable, 

electrical-resistance strain gages were applied to the steel, HP-shaped abutment 

piles at each bridge to measure bending strains in the piles. Electrical-resistance 

and vibrating-wire strain gages were mounted on several PC bridge girders to 

measure axial and bending strains. These strain gages were also applied to the 

bridge superstructure to measure the concrete temperature. These measurements 
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were used to establish an average bridge temperature and the temperature 

distributions in the bridge. A data acquisition system for each bridge remotely and 

automatically recorded data for each instrumentation device at selected time 

intervals. Table A.3 shows the number of each type of instrument installed at each 

bridge site. 

The instrumentation devices are described more thoroughly in Sections A.2 

through A.4. To individually identify all of the instruments installed at each bridge, 

each instrument was assigned an acronym-based code name. The first part of the 

code refers to the instrument type and the remaining letters or numbers indicate the 

location of the instrument on the bridge or the type of measurement. For example, 

the name SP-ENL described the String Potentiometer installed at the East abutment 

under the North girder measuring Longitudinal displacements. 

Table A.3. Number of instrumentation devices installed for field monitoring 

INSTRUMENT TYPE 

Displacement transducers 
Tiltmeters 
Strain gages on piles 

Strain gages on PC 
girders 

Strain gages on pile cap 

Thermocouples 

Total 

NUMBER OF INSTRUMENTS INSTALLED AT THE: 
Guthrie County Bridge Story County Bridge 

16 11 
1 1 

40 31 

16 12 

5 4 
43 46 

121 105 
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A.2 Displacement transducers 

At each bridge, longitudinal displacements (translations parallel to the 

longitudinal axis of the bridge) of one abutment were measured at three locations 

across the width of the backwall. Also, transverse displacements (translations 

perpendicular to the longitudinal axis of the bridge) of this abutment were measured 

at the ends of the backwall. Longitudinal displacements of the other abutment at 

each bridge were measured at the mid-width of the bridge. Displacement 

transducers were mounted on each bridge structure to record differential 

displacements between a pile and the pile cap of one abutment and between the 

center PC girder and the pier caps. Additional transducers were installed at the 

Guthrie County Bridge to measure differential displacement between center PC 

girder and the abutment backwall. A tiltmeter was mounted at the center of pile cap 

of one abutment of each bridge to measure rotations of the pile cap in the vertical 

plane parallel to the longitudinal axis of the bridge. 

A.2. 1 Guthrie County Bridge 

Bridge movements at the Guthrie County Bridge were measured with sixteen, 

string-potentiometer, displacement transducers and a tiltmeter. Table A.4 lists the 

transducers and Fig. A.1 shows the location of these transducers for the Guthrie 

County Bridge. Nine of these transducers (SP-SW-LT, SP-SW-LB, SP-SC-LT, SP

SC-LB, SP-SE-LT, SP-SE-LB, SP-NC-L, SP-SW-T, and SP-SE-T) were used to 

measure absolute displacements of the abutments. These transducers were 

mounted on benchmark posts that were installed about 10 ft from the bridge 

abutments. To verify the stability of one of the benchmark posts, a displacement 
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Table A.4. Transducers at the Guthrie County Bridge 
INSTRUMENT 

CODE 
SP-SW-LB 
SP-SC-LT 
SP-SC-LB 
SP-SE-LB 
SP-NC-L 
SP-SW-T 
SP-SE-T 

SP-SC-LV 

SP-SC-RGT 

SP-SC-RGB 

SP-SC-RPB 

SP-SC-RPF 

SP-SP-RPL 

SP-NP-RPL 

TM-SC-LR 

LOCATION 

South abutment at West end 
South abutment at Center of width 
South abutment at Center of width 
South abutment at East end 
North abutment at Center of width 
South abutment at West edge 
South abutment at East edge 
South abutment near Center of 

width 

South abutment at Center girder 

South abutment at Center girder 

South abutment at Center of width 

South abutment at Center of width 

South Pier 

North Pier 

South abutment at Center of width 

MEASUREMENT 

Longitudinal movement at Bottom of pile cap 
Longitudinal movement at Top of pile cap 
Longitudinal movement at Bottom of pile cap 
Longitudinal movement at Bottom of pile cap 
Longitudinal movement of pile cap 
Transverse movement of pile cap 
Transverse movement of pile cap 
Relative Longitudinal displacement between 

benchmark posts for Verification 
Relative displacement between abutment 

backwall and Girder Top flange 
Relative displacement between abutment 

backwall and Girder Bottom flange 
Relative displacement between Pile cap Back 

and pile 
Relative displacement between Pile cap Front 

and pile 
Relative movement of superstructure over 

south Pier along Longitudinal axis 
Relative movement of superstructure over 

north Pier along Longitudinal axis 
Longitudinal Rotation of the south abutment 

pile cap 

transducer (SP-SC-LV) was installed to measure any differential longitudinal 

movement between two posts. The remaining six displacement transducers (SP-

SC-RGT, SP-SC-RGB, SP-SC-RPB, SP-SC-RPF, SP-SP-RPL, SP-NP-RPL) were 

mounted on the bridge structure to record differential displacements between bridge 

elements. The tiltmeter (TM-SC-LR) was mounted at the center of the south 

abutment pile cap to measure rotations in the vertical plane parallel to the 

longitudinal axis of the bridge. 

Abutment rotations were also measured using the pairs of post-mounted 

displacement transducers measuring absolute longitudinal displacements of the top 

and bottom of the pile cap. Two of these displacement transducers (SP-SE-LT and 
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SP-SW-LT) were removed in July 1999, because of concerns about the validity of 

this method for determining the abutment rotations. To compare the abutment 

rotation measurements obtained with the tiltmeter, the pair of displacement 

transducers at the midwidth of the south abutment (SP-SC-LT and SP-SC-LB) were 

monitored for the duration of the experimental program. 

A.2.2 Story County Bridge 

Eleven, string-potentiometer, displacement transducers and a tiltmeter were 

installed at the Story County Bridge to measure bridge displacements. Table A.5 

lists the transducers and Figure A.2 shows the location of the transducers for the 

Story County Bridge. Six of these displacement transducers (SP-EN-L, SP-EC-L, 

SP-ES-L, SP-WC-L, SP-EN-T, and SP-ES-T) were used to measure displacements 

of the abutments. These transducers were mounted on benchmark posts that were 

Table A.5. Transducers at the Story County Bridge 
INSTRUMENT 

CODE 
SP-EN-L 
SP-EC-L 
SP-ES-L 
SP-WC-L 
SP-EN-T 
SP-ES-T 

SP-EC-LV 

SP-EC-RPS 

SP-EC-RPF 

SP-EP-RPL 

SP-WP-RPL 

TM-EC-LR 

LOCATION 

East abutment, North end 
East abutment, Center 
East abutment, East end 
West abutment, Center 
East abutment, North edge 
East abutment, South edge 

East abutment, Center 

East abutment, Center 

East abutment, Center 

East Pier 

West Pier 

East abutment, Center 

MEASUREMENT 

Longitudinal movement of pile cap 
Longitudinal movement of pile cap 
Longitudinal movement of pile cap 
Longitudinal movement of pile cap 
Transverse movement of pile cap 
Transverse movement of pile cap 
Relative Longitudinal displacement between 

benchmark posts for Verification 
Relative displacement between Pile cap 

Back and pile 
Relative displacement between Pile cap 

Front and pile 
Relative movement of superstructure over 

east Pier along Longitudinal axis 
Relative movement of superstructure over 

west Pier along Longitudinal axis 
Longitudinal Rotation of the pile cap 
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installed near the bridge abutments. To verify the stability of one of the benchmark 

posts, a displacement transducer (SP-EC-LV) was installed to measure any 

differential movement between two adjacent posts. The remaining four 

displacement transducers (SP-EC-RPB, SP-EC-RPF, SP-EP-RPL, SP-WP-RPL) 

were mounted on the bridge structure to record differential displacements between 

bridge elements. The tiltmeter (TM-EC-LR) was mounted at the center of the east 

abutment pile cap to measure rotations in the vertical plane parallel to the 

longitudinal axis of the bridge. 

A.2.3 Transducers mounted on benchmarks 

Each post-mounted transducer was firmly bolted to a benchmark post and its 

sensor cable was linked to a bridge abutment with a steel wire. As a bridge 

abutment moved relative to a benchmark post, the displacement was measured by 

the transducer sensor wire moving into and out of the transducer. 

For the longitudinal displacement measurements at the south abutment of the 

Guthrie County Bridge, the transducer wires for SP-SW-LT, SP-SC- LT, and SP-SE

L T were attached to the abutment at approximately 3 in. from the top of the pile cap. 

The wires for SP-SW-LB, SP-SC-LB, and SP-SE-LB were attached at approximately 

3 in. above the bottom of the pile cap. The vertical distance between the transducer 

wires allowed for the determination of pile cap rotations in a plane parallel to the 

longitudinal axis of the bridge. The wires for the displacement transducers 

measuring transverse displacements of the south abutment and longitudinal 

displacements of the north abutment at the Guthrie County Bridge were attached at 
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the mid-height of the pile cap. At the Story County Bridge, all of the abutment 

displacement measurements were made at the mid-height of the pile cap. 

For each bridge site, the benchmark posts consisted of a steel pipe supported 

by a concrete foundation. Fig. A.3 shows a typical longitudinal cross section near an 

abutment. The top of the concrete foundation for a benchmark post was 3 to 4 ft 

below grade. The steel posts were surrounded by a 12-in. diameter, corrugated 

plastic pipe that was filled with bat! insulation to prevent the soil backfill from 

contacting the steel posts and to insulate the post footing. To protect the 

transducers and extension wires from vandalism and weather, the post-mounted 

transducers were enclosed by wood housings. 

The steel posts that held the transducers that measured transverse 

movements of the south abutment of the Guthrie County Bridge were installed by 

first drilling with a truck-mounted auger a 16-in. diameter hole to a depth of about 1 O 

ft. Then, concrete for these post foundations was cast in the hole to a depth of 

about 5 ft below grade and the steel post was placed in the fresh concrete. These 

posts were also isolated from the surrounding soil by the technique previously 

described. 

To check the stability of one of the benchmark posts that supported a 

transducer that measured longitudinal bridge movements, an additional post was 

installed approximately 4 ft from the post located under the center girder near the 

south abutment at the Guthrie County Bridge. A transducer was bolted to this 

additional post and the transducer string was attached to the post under the center 

girder. At the Story County Bridge, a similar installation was used under the center 
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girder near the east abutment. Any differential displacement recorded by these 

transducers after correcting for the temperature-induced wire length change 

between the two posts would indicate some instability in one or both of the 

benchmark posts and transducer assemblies. 

A.2.4 Transducers mounted to bridge 

Relative longitudinal movements between the bridge superstructure and each 

pier were measured with displacement transducers that were mounted to the 

undersides of the center girders as shown in Figure A.4. When possible, a 

transducer wire was directly attached to the pier cap concrete using an eyehook and 

a concrete screw. However, at the south pier of the Guthrie County Bridge, the 

displacement transducer wire was hooked to a steel plate that had been glued and 

..,..... ..,-.--

' µ 
PC girder 

Displ acement transducer 
// 

RC pier cap 

, 
v 

Figure A.4. Typical displacement transducer installation for the relative 
displacement measurements between the center girder and a 
pier cap 
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screwed to the vertical face of the pier cap. The 3.75 in.-thick, neoprene bearing 

pads below the PC girders at this pier created a gap between the bottom of the 

girder and the top of the pier cap. The steel plate served as an extension of the 

vertical face of the pier cap. 

At the Guthrie County Bridge, differential displacements of the superstructure 

over the north pier were initially expected to be negligible; therefore, a displacement 

transducer was not initially installed at this pier. The bridge plans showed a full

depth pier diaphragm that was keyed into the pier cap. The drawings indicated that 

the north pier was a "fixed" pier, while the south pier was an "expansion" pier. 

However, longitudinal displacements at the north abutment were found to be larger 

than the longitudinal displacements at the south abutment. A displacement 

transducer (SP-NP-RPL) measuring any relative superstructure movement over the 

north pier of the Guthrie County Bridge was added on July 17, 1998. 

At the Guthrie County Bridge, displacement transducers were installed on the 

top and bottom flanges of the center girder near the south abutment to measure 

relative movements of the PC girder with respect to the abutment backwall as shown 

in Fig. A.5. Each transducer was attached to the inside of a steel box and each box 

was attached to wood 2x6's that had been glued and screwed to the vertical face of 

one of the girder flanges. Relative displacements between a PC girder and a RC 

abutment backwall were not measured at the Story County Bridge. 

At each bridge, two displacement transducers that were clamped to a pile 

measured relative vertical displacements between an abutment pile cap and a pile 

as shown in Fig. A.6. At the Guthrie County Bridge, the transducers were mounted 
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measurements between the abutment backwall and a PC girder 

to a pile near the mid-width of the south abutment. At the Story County Bridge, 

these transducers were mounted to the center pile under the east abutment. The 

horizontal separation between the two transducers allowed for the determination of 

the relative rotation between the pile and the pile cap in the vertical plane parallel to 

the longitudinal axis of the bridge. 

A.3 Strain gages 

Several types of strain gages were used to monitor strains in selected 

members of each bridge. Weldable, electrical-resistance, strain gages were applied 

to several steel HP-shaped abutment piles at each bridge. At the Guthrie County 

Bridge, bondable, electrical-resistance strain gages were applied to the flanges of 

selected PC girders and to the exposed face of an abutment pile cap. At the Story 
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County Bridge, vibrating-wire, strain gages were used to measure strains in PC 

girders and in a pile cap. 

Each abutment pile that was instrumented had a total of eight strain gages 

applied to the outside faces of the flanges near the flange tips as shown in Figure 

A. 7. An arrangement of four strain gages was used at two cross sections that were 

located at 9 in. and 33 in. below the bottom of the pile cap. If four longitudinal pile 

strains are known at a pile cross section the x and y-axis bending, axial, and 

torsional strains can be evaluated at the monitored cross section. Strain gages were 

used at two pile cross sections to permit the determination of the moment gradient 

along the pile length. 

The strain gages that were applied to selected PC girders were located at 5 ft 

from the face of support at each end of the girders. These gages were positioned at 

the mid-height of the top and bottom flanges. If the longitudinal girder strains are 

known at two points on a girder cross section the axial and bending strains can be 

calculated at those two points. The strain gages that were applied to the pile caps 

were mounted in a single line at the mid-height of the pile cap and at a spacing 

equal to one-half of the pile spacing. The gages were used to determine if there was 

significant horizontally bending deformation in the pile cap due to expansion of the 

bridge superstructure. 

A.3.1 Guthrie County Bridge 

Five abutment piles were instrumented with strain gages at the Guthrie 

County Bridge as shown in Figure A.8. At the south abutment, the two exterior piles 

and a pile near the mid-width of the abutment pile cap were monitored. At the north 
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Figure A.7. Strain gage locations on a HP10x42 steel pile (two cross-sections) 

abutment, a pile near the mid-width of the abutment and the west exterior pile were 

instrumented. Table A.6 lists the instrumentation code and description of the 

acronym used for the strain gages installed on the abutment piles at the Guthrie 

County Bridge. 

Twenty-one bondable, electrical-resistance, strain gages were applied to the 

Guthrie County Bridge as shown in Fig. A.9 to measure strain in concrete elements. 

Table A.7 lists the locations of these gages. Sixteen of these gages were bonded to 
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Table A.6. Abutment pile strain gages at the Guthrie County Bridge 
INSTRUMENT 

CODE 
SG-SWP-SWT 
SG-SWP-NWT 
SG-SWP-SET 
SG-SWP-NET 
SG-SWP-SWB 
SG-SWP-NWB 
SG-SWP-SEB 
SG-SWP-NEB 
SG-SCP-SWT 
SG-SCP-NWT 
SG-SCP-SET 
SG-SCP-NET 
SG-SCP-SWB 
SG-SCP-NWB 
SG-SCP-SEB 
SG-SCP-NEB 
SG-SEP-SWT 
SG-SEP-NWT 
SG-SEP-SET 
SG-SEP-NET 
SG-SEP-SWB 
SG-SEP-NWB 
SG-SEP-SEB 
SG-SEP-NEB 
SG-NCP-SWT 
SG-NCP-NWT 
SG-NCP-SET 
SG-NCP-NET 
SG-NCP-SWB 
SG-NCP-NWB 
SG-NCP-SEB 
SG-NCP-NEB 
SG-NWP-SWT 
SG-NWP-NWT 
SG-NWP-SET 
SG-NWP-NET 
SG-NWP-SWB 
SG-NWP-NWB 
SG-NWP-SEB 
SG-NWP-NEB 

MEMBER 

South abutment, West Pile 
South abutment, West Pile 
South abutment, West Pile 
South abutment, West Pile 
South abutment, West Pile 
South abutment, West Pile 
South abutment. West Pile 
South abutment, West Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, Center Pile 
South abutment, East Pile 
South abutment, East Pile 
South abutment, East Pile 
South abutment, East Pile 
South abutment, East Pile 
South abutment, East Pile 
South abutment, East Pile 
South abutment, East Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, Center Pile 
North abutment, West Pile 
North abutment, West Pile 
North abutment, West Pile 
North abutment, West Pile 
North abutment, West Pile 
North abutment, West Pile 
North abutment. West Pile 
North abutment, West Pile 

GAGE LOCATION 

South West flange corner, Top cross section 
North West flange corner, Top cross section 
South East flange corner, Top cross section 
North East flange corner, Top cross section 
South West flange corner, Bottom cross section 
North West flange corner, Bottom cross section 
South East flange corner, Bottom cross section 
North East flange corner, Bottom cross section 
South West flange corner, Top cross section 
North West flange corner, Top cross section 
South East flange corner, Top cross section 
North East flange corner, Top cross section 
South West flange corner, Bottom cross section 
North West flange corner, Bottom cross section 
South East flange corner, Bottom cross section 
North East flange corner, Bottom cross section 
South West flange corner, Top cross section 
North West flange corner, Top cross section 
South East flange corner, Top cross section 
North East flange corner, Top cross section 
South West flange corner, Bottom cross section 
North West flange corner, Bottom cross section 
South East flange corner, Bottom cross section 
North East flange corner, Bottom cross section 
South West flange corner, Top cross section 
North West flange corner, Top cross section 
South East flange corner, Top cross section 
North East flange corner, Top cross section 
South West flange corner, Bottom cross section 
North West flange corner, Bottom cross section 
South East flange corner, Bottom cross section 
North East flange corner, Bottom cross section 
South West flange corner, Top cross section 
North West flange corner, Top cross section 
South East flange corner, Top cross section 
North East flange corner, Top cross section 
South West flange corner, Bottom cross section 
North West flange corner, Bottom cross section 
South East flange corner, Bottom cross section 
North East flange corner, Bottom cross section 

r 
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Table A.7. PC girder and RC pile cap strain gages at the Guthrie County Bridge 
INSTRUMENT 

CODE 
SG-1SW-T 
SG-1SW-B 
SG-1SC-T 
SG-1SC-B 
SG-1SE-T 
SG-1SE-B 
SG-1NW-T 
SG-1NW-B 
SG-1NC-T 
SG-1NC-B 
SG-1NE-T 
SG-1NE-B 
SG-3NC-T 
SG-3NC-B 
SG-3SC-T 
SG-3SC-B 
SG-AF-1 
SG-AF-2 
SG-AF-3 
SG-AF-4 
SG-AF-5 

GAGE LOCATION 

1" Span, South end of the West girder, Top flange 
151 Span, South end of the West girder, Bottom flange 
151 Span, South end of the Center girder, Top flange 
1'1 Span, South end of the Center girder, Bottom flange 
1 ''Span, South end of the East girder, Top flange 
151 Span, South end of the East girder, Bottom flange 
1'' Span, North end of the West girder, Top flange 
151 Span, North end of the West girder, Bottom flange 
151 Span, North end of the Center girder, Top flange 
1'1 Span, North end of the Center girder, Bottom flange 
1'1 Span, North end of the East girder, Top flange 
151 Span, North end of the East girder, Bottom flange 
3'• Span, North end of the Center girder, Top flange 
3'• Span, North end of the Center girder, Bottom flange 
3'• Span, South end of the Center girder, Top flange 
3'• Span, South end of the Center girder, Bottom flange 
South Abutment pile cap Face position #1 
South Abutment pile cap Face position #2 
South Abutment pile cap Face position #3 
South Abutment pile cap Face position #4 
South Abutment pile cap Face position #5 

four PC girders. The remaining five strain gages were bonded to the north face of 

the south abutment pile cap. 

A. 3. 2 Story County Bridge 

Four abutment piles were instrumented with strain gages at the Story County 

Bridge as shown in Fig. A.1 O and listed in Table A.8. At the east abutment, the two 

exterior piles and the center pile were monitored. At the west abutment, the center 

pile was instrumented. Each pile had eight strain gages whose locations were as 

described for the piles at the Guthrie County Bridge. However, to permit the use of a 

dummy strain gage to correct measured strains for changes in the temperature of 

the data acquisition system, a strain gage at the bottom cross section of the south 

pile in the east abutment was not installed. At the Story County Bridge twelve, 
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Table A.8 . Abutment pile strain gages at the Story County Bridge 
INSTRUMENT 

CODE 
SG-ENP-SWT 

SG-ENP-NWT 

SG-ENP-SET 

SG-ENP-NET 

SG-ENP-SWB 

SG-ENP-NWB 

SG-ENP-SEB 

SG-ENP-NEB 

SG-ECP-SWT 

SG-ECP-NWT 

SG-ECP-SET 

SG-ECP-NET 

SG-ECP-SWB 

SG-ECP-NWB 

SG-ECP-SEB 

SG-ECP-NEB 

SG-ESP-SWT 

SG-ESP-NWT 

SG-ESP-SET 

SG-ESP-NET 

SG-ESP-SWB 

SG-ESP-NWB 

SG-ESP-NEB 

SG-WCP-SWT 

SG-WCP-NWT 

SG-WCP-SET 

SG-WCP-NET 

SG-WCP-SWB 

SG-WCP-NWB 

SG-WCP-SEB 

SG-WCP-NEB 

MEMBER 

East abutment, North Pile 

East abutment, North Pile 

East abutment, North Pile 

East abutment, North Pile 

East abutment, North Pile 

East abutment, North Pile 

East abutment, North Pile 

East abutment, North Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, Center Pile 

East abutment, South Pile 

East abutment, South Pile 

East abutment, South Pile 

East abutment, South Pile 

East abutment, South Pile 

East abutment, South Pile 

East abutment, South Pile 

West abutment, Center Pile 

West abutment, Center Pile 

West abutment, Center Pile 

West abutment, Center Pile 

West abutment, Center Pile 

West abutment, Center Pile 

West abutment, Center Pile 

West abutment, Center Pile 

GAGE LOCATION 

South West flange corner, Top cross section 

North West flange corner, Top cross section 

South East flange corner, Top cross section 

North East flange corner, Top cross section 

South West flange corner, Bottom cross section 

North West flange corner, Bottom cross section 

South East flange corner, Bottom cross section 

North East flange corner, Bottom cross section 

South West flange corner, Top cross section 

North West flange corner, Top cross section 

South East flange corner, Top cross section 

North East flange corner, Top cross section 

South West flange corner, Bottom cross section 

North West flange corner, Bottom cross section 

South East flange corner, Bottom cross section 

North East flange corner, Bottom cross section 

South West flange corner, Top cross section 

North West flange corner, Top cross section 

South East flange corner, Top cross section 

North East flange corner, Top cross section 

South West flange corner, Bottom cross section 

North West flange corner, Bottom cross section 

North East flange corner, Bottom cross section 

South West flange corner, Top cross section 

North West flange corner, Top cross section 

South East flange corner, Top cross section 

North East flange corner, Top cross section 

South West flange corner, Bottom cross section 

North West flange corner, Bottom cross section 

South East flange corner, Bottom cross section 

North East flange corner, Bottom cross section 
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Table A.9. PC girder and RC pile cap strain gages at the Story County Bridge 
INSTRUMENT 

CODE 
SG-1EN-T 
SG-1EN-B 
SG-1EC-T 
SG-1EC-B 
SG-1ES-T 
SG-1ES-B 
SG-1WC-T 
SG-1WC-B 
SG-3WC-T 
SG-3WC-B 
SG-3EC-T 
SG-3EC-B 
SG-AF-1 
SG-AF-2 
SG-AF-3 
SG-AF-4 

GAGE LOCATION 

1st Span, East side, North girder, Top flange 
1st Span, East side, North girder, Bottom flange 
1st Span, East side, Center girder, Top flange 
1st Span, East side, Center girder, Bottom flange 
1st Span, East side, South girder, Top flange 
1st Span, East side, South girder, Bottom flange 
1st Span, West side, Center girder, Top flange 
1st Span, West side, Center girder, Bottom flange 
3rd span, West side, Center girder, Top flange 
3rd span, West side, Center girder, Bottom flange 
3rd span, East side, Center girder, Top flange 
3rd span, East side, Center girder, Bottom flange 
East Abutment Face No. 1 
East Abutment Face No. 2 
East Abutment Face No. 3 
East Abutment Face No. 4 

vibrating-wire strain gages were applied to four PC girders and four vibrating-wire 

strain gages were applied to the west face of the east abutment pile cap. Table A.9 

lists the location and Figure A.11 shows the location of these 16 gages. 

A.3.3 Strain gage installation procedure 

To provide access to the strain gage locations on the outside face of the pile 

flanges the top portions of the selected piles were exposed. The excavation 

procedure consisted of removing the berm rubble in front of a pile and digging down 

through the berm soil to expose the pile flanges for a depth of about 42 in. At the 

gage locations the pile was cleared of soil and an electric grinder was used to 

expose clean bare steel. These surfaces were then sanded to provide a flat, smooth 

surface onto which the gage was welded . 
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Each weldable, electrical-resistance gage (Hitec model HBW-35-125-6-3VH

SS) consisted of a strain gage that had been bonded to a thin metal tab by the 

manufacturer. This metal tab for each gage was attached to the steel pile with a 

series of closely spaced, small tack welds. To strengthen the connection between a 

metal tab and a pile surface, Superglue was applied around the edges of the tab. At 

the Guthrie County Bridge, these gages were protected from moisture penetration by 

applying silicone caulk over the gages. At the Story County Bridge, asphalt cement 

was used to protect the pile gages. 

The bondable, electrical-resistance strain gages that were applied to the PC 

girders and the RC pile cap at the Guthrie County Bridge were bonded to the 

concrete surfaces with epoxies (AE-10 and Mbond 300) from Measurements Group, 

Inc. Several of the gages were installed at temperatures too cold to use the AE-10 

epoxy. These gages were bonded to the concrete with a faster setting epoxy Mbond 

300. This epoxy can cure at lower temperatures, but it has a low peel strength. 

Gages that were bonded with Mbond 300 could be easily peeled away from the 

epoxy. 

The concrete surfaces at the strain gage locations were cleaned and 

prepared as directed in the gage application instructions provided by the 

manufacturer of the strain gage epoxies. The epoxy was mixed and spread onto the 

concrete surface. The gages were positioned on the epoxy bed and held in place 

with a bracket designed to apply pressure to the gage while the epoxy set. After the 

epoxy had set, the gage was covered with a strip of butyl rubber to keep moisture 

away from the gage and epoxy. Several gages had to be re-bonded to the concrete 
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after they became loose during the application of the weatherproofing protection. 

The gages that peeled-off were re-bonded to the concrete with the AE-10 epoxy and 

heat was applied to properly cure the epoxy. The strain gage at the 1 SCB location 

on the Guthrie County Bridge was accidentally peeled-off when removing a clamping 

bracket in July of 1998. This gage was not re-bonded to the concrete. 

A vibrating-wire strain gage consists of a taut wire stretched between two 

anchor blocks. Changes in strain in the specimen are indicated by the change of the 

natural frequency of this taut wire. Each vibrating-wire gage installed at the Story 

County Bridge was attached to the PC girders or the RC abutment pile cap by firmly 

clamping the gage anchor blocks into the two mounting blocks that had been 

bonded to the concrete surfaces using a high-modulus epoxy cement. To protect 

the gage installation, a one-half cylindrical section of 4 in.-diameter PVC pipe was 

placed over the gage. The pipe covering was glued to concrete surface. 

The electrically-shielded extension wires that connected the strain gages to 

the data acquisition system were soldered to the wire leads of the gages in the field. 

The connections were protected against moisture infiltration by using shrink tubing 

around each of the three conductor wires and also around the entire extension wire. 

A.4 Thermocouples 

To measure the temperature of the concrete and to establish temperature 

gradients in each of the instrumented bridges, thermocouples were installed along 

the length, across the width, and through the depth of the bridge superstructures. 

Thermocouples were embedded in the RC deck slab and PC girders at several 
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locations by drilling a hole in the concrete member and grouting a thermocouple into 

the hole. Deck slab temperatures were measured at 4 in. from the bottom of the 

slab and girder temperatures were measured at a depth of about % in. into the 

member. 

Thermocouples were also used to measure the air temperature near the 

displacement transducer wires so that temperature corrections could be made to the 

raw displacement data. These thermocouples were suspended in the air near the 

mid-length of the transducer wires and did not provide information about the bridge 

temperatures. Only the thermocouples that were used to measure bridge 

temperatures are described in Sections A.4.1 and A.4.2. The "E" in the instrument 

code indicates that the thermocouple was Embedded into the concrete bridge 

structure. 

A.4. 1 Guthrie County Bridge 

A total of 41 thermocouples, listed in Table A.10, were installed at the Guthrie 

County Bridge as shown in Figure A.12. Most of the thermocouples were installed in 

the south span (Span 1) of this bridge. In this span, temperatures were measured in 

both of the exterior and center PC girders near the south abutment, at the midspan, 

and near the south pier. The remaining thermocouples in the bridge superstructure 

were embedded in the slab and in the center girder at the midspan of the center 

span (Span 2) and at both ends of the west span {Span 3). At each PC girder cross 

section where temperatures of the concrete were measured, thermocouples were 

embedded into the top and bottom flanges of the girders. At several of these 

locations, deck slab and PC girder web temperatures were also measured. An 
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Table A.10. Thermocouple locations at the Guthrie County Bridge 
INSTRUMENT CODE MEMBER LOCATION 
TC-E-SAF South Abutment pile cap Face Mid-height 
TC-E-1SE-S 1st Span, South end of the East girder Slab 
TC-E-1SE-T 1st Span, South end of the East girder Top flange 
TC-E-1SE-W 1st Span, South end of the East girder Web 
TC-E-1SE-B 1st Span, South end of the East girder Bottom flange 
TC-E-1SC-S 1st Span, South end of the Center girder Slab 
TC-E-1SC-T 1st Span, South end of the Center girder Top flange 
TC-E-1SC-W 1st Span, South end of the Center girder Web 
TC-E-1SC-B 1st Span, South end of the Center girder Bottom flange 
TC-E-1SW-S 1st Span, South end of the West girder Slab 
TC-E-1SW-T 1st Span, South end of the West girder Top flange 
TC-E-1SW-W 1st Span, South end of the West girder Web 
TC-E-1SW-B 1st Span, South end of the West girder Bottom flange 
TC-E-1MSE-S 1st span, MidSpan, East girder Slab 
TC-E-1MSE-T 1st span, MidSpan, East girder Top flange 
TC-E-1MSE-W 1st span, MidSpan, East girder Web 
TC-E-1MSE-B 1st span, MidSpan, East girder Bottom flange 
TC-E-1MSC-S 1st span, MidSpan, Center girder Slab 
TC-E-1MSC-T 1st span, MidSpan, Center girder Top flange 
TC-E-1 MSC-W 1st span, MidSpan, Center girder Web 
TC-E-1 MSC-B 1st span, MidSpan, Center girder Bottom flange 
TC-E-1MSW-S 1st span, MidSpan, West girder Slab 
TC-E-1 MSW-T 1st span, MidSpan, West girder Top flange 
TC-E-1MSW-W 1st span, MidSpan, West girder Web 
TC-E-1 MSW-B 1st span, MidSpan, West girder Bottom flange 
TC-E-1NE-T 1st Span, North end of the East girder Top flange 
TC-E-1NE-B 1st Span, North end of the East girder Bottom flange 
TC-E-1NC-T 1st Span, North end of the Center girder Top flange 
TC-E-1NC-B 1st Span, North end of the Center girder Bottom flange 
TC-E-1NW-T 1st Span, North end of the West girder Top flange 
TC-E-1NW-B 1st Span, North end of the West girder Bottom flange 
TC-E-2MSC-S 2nd span, MidSpan, Center girder Slab 
TC-E-2MSC-T 2nd span, MidSpan, Center girder Top flange 
TC-E-2MSC-W 2nd span, MidSpan, Center girder Web 
TC-E-2MSC-B 2nd span, MidSpan, Center girder Bottom flange 
TC-E-3SC-T 3rd Span, South end of the Center girder Top flange 
TC-E-3SC-B 3rd Span, South end of the Center girder Bottom flange 
TC-E-3NC-S 3rd Span, North end of the Center girder Slab 
TC-E-3NC-T 3rd Span, North end of the Center girder Top flange 
TC-E-3NC-W 3rd Span, North end of the Center girder Web 
TC-E-3NC-B 3rd Span, North end of the Center girder Bottom flange 
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additional thermocouple was installed in the north face of the south abutment pile 

cap near the mid-width of the abutment. 

A.4.2 Story County Bridge 

The thermocouple locations at the Story County Bridge were similar to those 

at the Guthrie County Bridge as shown in Fig. A.13. Most of the thermocouples 

were placed in the east span. There were some changes made to the thermocouple 

installation once the Guthrie County Bridge instrumentation was complete. To 

obtain a more complete transverse temperature distribution, more thermocouples 

were embedded in the deck slab at the midspan of the east span at the Story County 

Bridge than were used in the south span at the Guthrie County Bridge. These 

additional thermocouples were placed in the slab near the PC girders and midway 

between the girders. Table A.11 lists the 46 thermocouples that were installed in the 

superstructure of the Story County Bridge. 

A.5 Data acquisition procedure 

Data acquisition was accomplished using Campbell Scientific, Inc. 

dataloggers and peripherals. A CR 1 OX datalogger at each bridge provided the 

excitation voltage for the instrumentation and recorded the instrumentation output. 

The data were initially stored in the CR10X's memory until the data was downloaded 

to a laptop computer. Multiplexers (Model AM416) were used to increase the 

number of instrumentation devices that the CR1 OX could accommodate. 
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Table A.11. Thermocouples installed at the Story County Bridge 
INSTRUMENT 

CODE 
TC-E-1EN-T 
TC-E-1EN-B 
TC-E-1EC-S 
TC-E-1EC-T 
TC-E-1EC-W 
TC-E-1EC-B 
TC-E-1ES-T 
TC-E-1ES-B 
TC-E-1MSNX-S 
TC-E-1MSNX-W 
TC-E-1 MSNX-8 
TC-E-1 MSNl-SN 
TC-E-1 MSNl-SC 
TC-E-1MSNl-T 
TC-E-1MSNl-W 
TC-E-1MSNl-8 
TC-E-1 MSCN-SN 
TC-E-1 MSCN-SC 
TC-E-1 MSCS-SN 
TC-E-1 MSCS-SC 
TC-E-1MSCS-SS 
TC-E-1MSCS-T 
TC-E-1 MSCS-W 
TC-E-1 MSCS-8 
TC-E-1 MSSl-SC 
TC-E-1 MS SI-SS 
TC-E-1 MSSl-T 
TC-E-1 MSSl-W 
TC-E-1 MSSl-B 
TC-E-1 MSSX-S 
TC-E-1 MSSX-W 
TC-E-1 MSSX-8 
TC-E-1WC-S 
TC-E-1WC-T 
TC-E-1WC-W 
TC-E-1WC-8 
TC-E-2MSC-S 
TC-E-2MSC-T 
TC-E-2MSC-W 
TC-E-2MSC-B 
TC-E-3WC-S 
TC-E-3WC-T 
TC-E-3WC-W 
TC-E-3WC-B 
TC-E-3EC-T 
TC-E-3EC-8 

MEMBER 

1st span, East end of North girder 
1st span, East end of North girder 
1st span, East end of Center girder 
1st span, East end of Center girder 
1st span, East end of Center girder 
1st span, East end of Center girder 
1st span, East end of South girder 
1st span, East end of South girder 
1st span, MidSpan, North girder, Exterior side 
1st span, MidSpan, North girder, Exterior side 
1st span, MidSpan, North girder, Exterior side 
1st span, MidSpan, North girder, Interior side 
1st span, MidSpan, North girder, Interior side 
1st span, MidSpan, North girder, Interior side 
1st span, MidSpan, North girder, Interior side 
1st span, MidSpan, North girder, Interior side 
1st span, MidSpan, Center girder, North side 
1st span, MidSpan, Center girder, North side 
1st span, MidSpan, Center girder, South side 
1st span, MidSpan, Center girder, South side 
1st span, MidSpan, Center girder, South side 
1st span, MidSpan, Center girder, South side 
1st span, MidSpan, Center girder, South side 
1st span, MidSpan, Center girder, South side 
1st span, Mid Span, South girder, Interior side 
1st span, MidSpan, South girder, Interior side 
1st span, MidSpan, South girder, Interior side 
1st span, MidSpan, South girder, Interior side 
1st span, MidSpan, South girder, Interior side 
1st span, MidSpan, South girder, Exterior side 
1st span, MidSpan, South girder, Exterior side 
1st span, MidSpan, South girder, Exterior side 
1st span, West end of Center girder 
1st span, West end of Center girder 
1st span, West end of Center girder 
1st span, West end of Center girder 
2nd span, MidSpan, Center girder 
2nd span, MidSpan, Center girder 
2nd span, MidSpan, Center girder 
2nd span, MidSpan, Center girder 
3rd span, West end of Center girder 
3rd span, West end of Center girder 
3rd span, West end of Center girder 
3rd span, West end of Center girder 
3rd span, East end of Center girder 
3rd span, East end of Center girder 

LOCATION 

Top flange 
Bottom flange 
Slab 
Top flange 
Web 
Bottom flange 
Top flange 
Bottom flange 
Slab 
Web 
Bottom flange 
in Slab span, North side 
in Slab span, Center 
Top flange 
Web 
Bottom flange 
in Slab span, North side 
in Slab span, Center 
in Slab span, North side 
in Slab span, Center 
in Slab span, South side 
Top flange 
Web 
Bottom flange 
in Slab span, Center 
in Slab span, South 
Top flange 
Web 
Bottom flange 
Slab 
Web 
Bottom flange 
Slab 
Top flange 
Web 
Bottom flange 
Slab 
Slab 
Web 
Bottom flange 
Slab 
Top flange 
Web 
Bottom flange 
Top flange 
Bottom flange 
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A.5.1 Data acquisition equipment 

At the Guthrie County Bridge the CR10X datalogger and six multiplexers were 

bolted into two, large (18 in. by 24 in. by 6 in.), steel, electrical boxes. These boxes 

were attached to the bottom surface of the deck slab about 20 feet from the south 

abutment near the center girder. Another multiplexer was located at the north end of 

the bridge. This multiplexer was bolted into a smaller (6 in. by 8 in. by 4 in.) 

electrical box that was attached to the south face of the north abutment. 

A datalogger and seven multiplexers were used at the Story County Bridge. 

These units were bolted into two, large, electrical boxes that were attached to the 

west face of the east abutment backwall between two PC girders. All of the 

electrical wires from the instrumentation devices converged at this location, where 

they were connected to the data acquisition system. 

Additional Campbell Scientific data acquisition equipment used at the bridge 

sites included two units that recorded strain in the electrical-resistance and vibrating

wire strain gages. At the Guthrie County and the Story County Bridges, a Terminal 

Input Module, TIM (Model 4FWB350) was used to measure strain changes in the 

electrical-resistance strain gages installed on the bridges. All of the electrical

resistance strain gages at each bridge were multiplexed through one TIM unit. To 

provide excitation and measure strain changes in the vibrating-wire strain gages 

installed at the Story County Bridge, a Vibrating Wire Sensor Interface (Model 

AVW1) was used. 

To communicate with the datalogger at the Guthrie County Bridge from an 

office in the Town Engineering Building on the Iowa State University campus, a 
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Campbell Scientific modem (Model COM 200) was used. The modem was 

connected to a phone jack that was installed at the bridge site. Using the modem, 

recorded instrumentation data was transferred from the CR10X datalogger to the 

laptop computer on the ISU campus. Data collected at the Story County Bridge was 

directly downloaded to a laptop computer by directly connecting the computer to the 

CR1 OX datalogger at the bridge site. 

A. 5. 2 Data acquisition interva I and initial data reduction 

Diurnal (daily) temperature variations occur quickly compared to the seasonal 

temperature variations. To establish the diurnal temperature variation, 

measurements were frequently recorded. For the Guthrie County Bridge, all 

instrumentation readings were recorded at 20-minute intervals between December 

17, 1997 and May 15, 1998. After May 15, 1998 the data collection frequency was 

changed to every 30 minutes to reduce to volume of data that needed to be stored 

and analyzed, yet maintain sufficient sensitivity to record changes in the bridge 

response due to diurnal temperature variations. Since data acquisition began in the 

middle of July 1998 at the Story County Bridge, the instrumentation measurements 

were recorded at 30-minute intervals. 

Each time data were collected, the datalogger recorded each instrumentation 

measurement six times. To minimize strain and displacement measurement errors 

due to the possibility that highway traffic may have been on the bridge when the 

instrumentation measurements were made, the raw data were "filtered" to eliminate 

outlier values. Rather than computing a simple average of the six recorded data 

values for each instrumentation device, an algorithm was developed and applied to 
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discard any questionable data. The algorithm used two criteria for determining an 

allowable range of data values. For the first criterion, an outlier data point was 

defined as a value that was more than one standard deviation away from the mean 

value of the six data points. For a normal distribution in the data values, this meant 

that, on average, 32% of the measured values would be discarded. The second 

criterion was based on the median of the six measured values. If the standard 

deviation of a data set was small and the first criterion would throw out good data, 

the data values were not thrown out unless it was more than a fixed amount away 

from the median value. The limits of acceptable deviations from the median value 

were different for each instrument type. The allowable deviations were: 0.0015 in. 

for displacement transducers, 7.5 microstrains for strain gages, and 0.2° C for 

thermocouples. These values were based on the expected repeatability of the 

instrumentation measurements. After the filtering algorithm had discarded the 

questionable data a mean value of the remaining data values for each 

instrumentation device was calculated and used as the representative 

instrumentation reading for that particular time. 

With a 30-minute data collection interval, the volume of data was too large to 

analyze and plot efficiently. To facilitate the analysis of the data, the volume of data 

was reduced by deleting three of every four filtered data points. All of the data files 

were stored on a computer hard drive and on several floppy (Zip brand) disks. 
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APPENDIX B -ADDITIONAL ANALYSIS OF THE EXPERIMENTAL RESULTS 

The following section provides supplementary discussion of the experimental 

results from the Guthrie County Bridge and Story County Bridge. This section 

comprises of excerpts from Chapter 4 of the thesis written by Matt Thomas [26], and 

is reproduced with the permission the author. The experimental data presented in 

this chapter is for the time period beginning at the start of the project through 

January 1999. 

The subheading numbering in this appendix corresponds to the subheading 

numbering in Chapter 4 of this thesis. In other words, Section B.2.2 corresponds to 

Section 4.2.2. The section headings in this appendix correspond to the headings in 

this thesis, not to original numbering in Chapter 4 of the thesis written by Matt 

Thomas. 

B.2 Bridge temperatures 

8.2.1 Average concrete temperature 

The maximum average bridge temperatures were warmer than the air 

temperatures measured by a thermocouple placed under each bridge. The 

temperature recorded by the National Weather Service (NWS) for Des Moines 

(located within 30 miles of the bridge) on July 20, 1998 was 98°F (37°C). In this 

case, the air temperature reported by the NWS was close to the maximum average 

bridge temperature. 
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B.2.2 Verlical temperature gradients 

Vertical temperature distributions in each bridge superstructure were 

measured by thermocouples installed in each bridge's deck slab and in selected PC 

girders. Significant temperature gradients were measured through the depth of each 

bridge superstructure. Vertical thermal gradients are a concern because they can 

create secondary moments in continuous bridge structures and cause longitudinal 

stresses to develop in the cross section. The largest positive thermal gradients 

occurred at the times of the maximum average bridge temperatures. 

Vertical temperature distributions were found to be bilinear by Girton, et al. 

[?]. His research showed that for a PC girder bridge there was a moderate vertical 

thermal gradient through the depth of the girders and a steep vertical thermal 

gradient in the slab. Since the temperature of the deck slabs of the Guthrie and 

Story County Bridges were made only at one depth in the slab, bilinear temperature 

distributions could not be verified. Several temperature measurements through the 

depth of the slab would have been necessary to be able to characterize the vertical 

temperature gradients. 

Using temperature measurements made in the top flange, web, and bottom 

flange of the PC girders, a linear, best-fit thermal gradient for the girder was 

computed for each instrumented cross section. Extrapolating the girder temperature 

gradient, a temperature at the bottom of the slab was calculated. The thermal 

gradient in the slab was found by assuming that a bilinear temperature distribution 

existed through the superstructure depth as shown by Girton. The extrapolated 

temperature at the bottom of the slab and the measured temperature at the mid-
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thickness of the deck slab established the linear thermal gradient in the deck. The 

temperature at the top of the deck slab was determined by a linear extrapolation of 

the slab thermal gradient. 

The temperatures measured at each depth (top flange, web, and bottom 

flange) in the PC girders were averaged and an average, linear, best-fit thermal 

gradient for the girders was determined for these average temperatures. An 

average temperature at the bottom of the slab was computed by extrapolating the 

average temperature gradient in the girders. Also, an average slab thermal gradient 

was determined for each bridge using the extrapolated temperature of the bottom of 

the slab and the temperature at the mid-depth of the slab. 

The magnitude of the slope of the thermal gradient varies seasonally as well 

as daily. The magnitude of the maximum vertical temperature gradient is much 

larger in the summer due to increased exposure of the bridge to solar radiation. 

Negative temperature gradients through the depth of the superstructure occur more 

frequently in the winter months, but do not have nearly as large a magnitude as the 

positive thermal gradients in the summer. 

B.2.3 Transverse temperature gradients 

The Story County Bridge had a large number of thermocouples in the slab to 

measure temperature variations across the width of the bridge. Temperature 

measurements made in the slab at the midspan of the east span did not indicate a 

horizontal temperature gradient. However, a significant temperature variation was 

noted at the edges of the Story County Bridge. The temperatures measured in the 

slab sections at the edges of the bridge that were beneath the continuous, Jersey-
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type, concrete barriers were significantly cooler than the rest of the slab at the time 

of the maximum average bridge temperature. The concrete barriers shade the slab 

areas beneath them and provide additional thermal mass at that location. At the 

time of the minimum average bridge temperature on January 5, 1999, the slab 

temperatures were warmer at the edges of the bridge. No thermocouples were 

installed in the concrete barriers at either bridge site. 

Variations in the measured slab temperature across the bridge width did exist 

away from the bridge edges, but these small variations may have been due to 

differences in the vertical positions of the thermocouples in the slab. The steep 

vertical temperature gradient in the slab at the maximum temperature can create 

apparent transverse temperature variations if the slab thermocouples were not all 

installed at exactly the same depth. 

B.2.4 Longitudinal temperature gradients 

Temperature measurements were made at six locations along the longitudinal 

axis of each bridge. The temperatures measured in the PC girders and the slab 

along the centerline of each bridge were compared. Differences in the measured 

temperatures along the bridge length did not appear significant. To show a 

longitudinal temperature variation, temperature information for more locations along 

the length of the bridge would be necessary. Previous analytical work has shown 

that longitudinal temperature variations are neither significant, nor consequential. 

8.2.5 Pile temperatures 

The temperatures of several piles were measured near the bottom of the pile 

cap at each bridge. The changes in pile temperature were not as extreme as the 
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changes in the superstructure temperatures. Only the top several inches of the piles 

were exposed to open air. The temperature of the piles likely varies along the length 

of the pile and the measured temperatures represent only the temperature of the top 

portion of the piles. 

B.3 Bridge displacements 

8.3. 1 Longitudinal abutment displacements and change in bridge length 

Absolute longitudinal displacements parallel to the bridge longitudinal axis 

were measured with displacement transducers mounted to benchmark posts. These 

displacement measurements provided information concerning the change in length 

of the bridges and the rigid body motion of one abutment in a horizontal plane. 

The change in the bridge length was found by summing the longitudinal 

abutment displacements measured at the mid-width of the abutment pile cap at each 

end of the bridge. The recorded range of the change in bridge length during a 

complete yearly cycle [December 1997 through January 1999] was about 1.75 

inches (45 mm) for the Guthrie County Bridge. At the Story County Bridge, the 

displacements measured at the west abutment became erratic during September 

1998, due to a problem with the data acquisition program. A change in bridge length 

was not calculated until the middle of October 1998, so the change in bridge length 

was not monitored during the full summer-to-winter contraction period. The bridge 

will be monitored through the summer of 1999 to obtain data for a full yearly cycle. 

The displacement data has indicated a good correlation between the 

recorded change in bridge length and the change in temperature. The extent to 
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which the change in bridge length is related to the change in temperature can be 

indicated by plotting the change in bridge length versus the change in average 

bridge temperature. Since the average bridge temperature is not a perfect indicator 

of the influence of temperature on the longitudinal expansion and contraction of the 

bridge superstructure, this analysis is made to only show a general trend in the 

bridge displacement results. 

Nonlinearity of the longitudinal abutment displacements at the Guthrie County 

Bridge was observed. The south abutment experienced a decreased rate of 

displacement in the longitudinal direction as the average bridge temperature 

increased. The north abutment experienced an increase in longitudinal 

displacement rate when the south abutment was undergoing less displacement. 

The net effect produced a change in the bridge length that was approximately linear 

with respect to changes in temperature. This nonlinearity of abutment displacement 

response to increasing bridge temperature could be due to an increase in the backfill 

stiffness behind the south abutment as the abutment expands. A decrease in 

backfill stiffness behind the north abutment is not the likely cause, as soil pressures 

tend to increase in response to additional displacement. Factors affecting backfill 

stiffness include: backfill slope, backfill compaction, and moisture content of the 

backfill. 

8.3.2 Abutment rotation in a horizontal plane 

(No supplemental commentary) 
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8.3. 3 Abutment rotation in a vertical plane 

Pairs of displacement transducers and a tiltmeter were used to measure the 

rotation of an abutment pile cap in a vertical plane parallel to the longitudinal axis of 

the bridge. The rotation measurements obtained with each method at the Guthrie 

County Bridge were compared. At the Story County Bridge, only a tiltmeter was 

used to measure rotations of the east abutment pile cap. Those rotations were in a 

vertical plane that was parallel to the longitudinal axis of the bridge. 

The initial method of measuring abutment rotations at the Guthrie County 

Bridge used the difference in two longitudinal abutment displacement readings that 

were made with displacement transducers at the top and bottom of the pile cap. The 

difference in the two displacement readings divided by the vertical separation 

between the two transducers indicated the rotation of the abutment in radians. This 

method of measuring abutment rotations was called into question when the relative 

movement between two benchmark posts was significant compared to the 

magnitudes of the differences in the two displacement transducer measurements. If 

the posts were moving, the accuracy of such a small difference in longitudinal 

displacements was very uncertain. To reliably measure abutment rotations, a 

temperature-compensated tiltmeter was installed at the Guthrie County Bridge. Two 

transducers that measured the longitudinal abutment displacement at the top of the 

pile cap at the east and west ends of the south abutment pile cap were removed at 

the time of the tiltmeter installation. The transducer pair at the center of the south 

abutment pile cap was kept to determine whether previous rotation measurements 

were valid. 
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The correlation between the results obtained by each of the two methods was 

very good. The researchers concluded that the two independent methods of 

obtaining rotation measurements were both correct and that the rotation 

measurements indicated by the pairs of post-mounted displacement transducers 

were valid. 

The daily variation in the pile cap rotation appears to be greater during the 

summer months. This may be due to a greater daily range in average bridge 

temperatures or due to higher vertical thermal gradients that can occur during the 

summer months. 

A vertical temperature gradient would tend to arch the concrete 

superstructure upward. Unless the abutment was held rigidly, rotation of the 

abutment about a horizontal axis would occur. Rotation of the abutment may be 

also due to restraints on the abutment applied by the piles and the backfill soil. As 

the abutment translates longitudinally, forces are activated in the soil backfill and the 

steel piles. The shear force at the top of the pile is below the centroid of the bridge 

superstructure. The eccentricity of this shear force produces a moment at the end of 

the bridge. Similarly, if the resultant of the backfill soil pressure is below the centroid 

of the superstructure, an additional negative moment is applied to the end of the 

bridge. The evaluation of the significance of the contribution that these effects have 

on abutment rotations is beyond the scope of this experimental program and can be 

more easily accomplished with analytical methods. 
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8.3.4 Transverse abutment displacements 

Two post-mounted transducers measured the transverse displacement of an 

abutment at each end of the pile cap at each bridge. Two displacement 

measurements were necessary because the change in position of the abutment 

ends is a combination of two effects: the temperature-dependant volumetric 

expansion of the pile cap concrete and the rigid body translation of the abutment due 

to the longitudinal expansion of a skewed bridge. Skewed bridges may translate 

laterally because soil pressure exerted on the back of the abutment has a 

component of force perpendicular to the longitudinal axis of the bridge. 

To determine the magnitudes of the transverse abutment expansion and 

translation, it was assumed that the transverse thermal expansion of the pile cap 

was uniform across the width. The change in the abutment width was then the sum 

of the recorded displacements measured at each end of the pile cap. If each post

mounted transducer recorded displacements away from the benchmark posts, the 

pile cap changed dimension by the sum of those two measured displacements. The 

translation of the centroid of the pile cap can be estimated by dividing the difference 

in the measured displacements by two. This relationship can be illustrated easily if 

the measured displacement at one end of the pile cap is 2 in. and the displacement 

at the other end is zero. The translation of the center of mass of the abutment is 

then 1 in. 

8.3.5 Relative displacements 

Differential displacements between an abutment pile and the RC pile cap 

were measured at each bridge site. The relative rotation could be determined using 
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two displacement measurements separated by a distance. The relative rotation (in 

microradians) was calculated by dividing the difference between the measured 

relative vertical displacements at the front and the back of the pile cap by the 

horizontal separation of the displacement measurements. This relative rotation 

measurement was not the relative rotation between the top of the pile and the pile 

cap; but rather, it was the relative rotation between the pile cap and the point on the 

pile at which the transducers were attached. Since the bracket, to which the 

transducers were clamped, was clamped to the pile at a distance of about 18 inches 

down from the bottom of the pile cap, the measured relative rotation may be due to 

flexural curvature in the pile. 

B.4 Bridge member strains 

8.4. 1 Pile strains 

As integral abutment bridges expand and contract, the tops of the abutment 

piles move with the abutment. If the abutment pile cap and the bridge 

superstructure restrain rotation of the pile top about a horizontal axis, a moment 

develops in the top of the pile. The strain induced in the steel piling by the abutment 

displacements was measured by electrical-resistance strain gages that were welded 

to the pile flanges. The measured pile strains indicated that biaxial bending of the 

pile occurred and that a moment gradient developed along the length of the pile. 

Normal torsional warping strains measured in the piles at each bridge were found to 

be very small. 
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At both bridges, higher magnitudes of bending strains in the abutment piles 

were measured at 9 in. (230 mm) than at 33 in. (840 mm) below the pile cap. The 

bending strains measured at the two cross sections have a similar cyclic trend. The 

range in the y-axis bending at the upper and lower cross sections [at a pile in the 

Guthrie County Bridge] was about 700 and 400 microstrain, respectively. The 

difference in measured y-axis bending strains indicates that there is a moment 

gradient along the length of the pile. If there was negligible soil pressure contacting 

the pile between the instrumented cross sections, the moment gradient in the pile 

should be linear. The piles at the Guthrie County Bridge were in predrilled holes, 

surrounded with a bentonite slurry. This highly plastic soil has a low stiffness and 

will not exert much force on the pile between the instrumented cross sections. Using 

the measured bending strains in the pile, the bending strain at the bottom of the pile 

cap can be determined by linear extrapolation. 

At the Story County Bridge, the magnitude of the bending strains at the 

bottom cross section were also lower than the bending strains recorded at the cross 

section near the pile cap. The difference between the y-axis bending strains at the 

two cross sections in the piles at the Story County Bridge was greater that the 

difference in y-axis bending strain recorded in one pile at the Guthrie County Bridge. 

The difference in the y-axis bending strains of the piles at the two bridges may be 

due to differences in the lateral restraint on the pile offered by the soil surrounding 

the piles or due to different magnitudes of abutment rotation and displacement. The 

predrilled holes for the piles at the Story County Bridge were filled with sand. When 

the abutment piles were exposed by excavating the berm soil, the sand around the 
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top of the pile sloughed away from the pile. Therefore, there was no lateral restraint 

between the monitored cross sections and a linear extrapolation of the strain gage 

readings was possible. 

8.4.2 Girder strains 

The abutment rotation may be due to eccentric pile shear and backfill 

pressure restraint on the abutment displacement. These eccentric forces would tend 

to create a moment on the bridge superstructure at the abutment. For a continuous 

structure with three equal spans and constant flexural rigidity, the moment carried 

over to the other end of the first span would be just over one-quarter of the moment 

applied to the end. The girder likely experiences less bending deformation at the 

pier because the moment applied at the abutment is not completely carried over to 

the pier. 
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APPENDIX C - PILE-TO-SOIL INTERACTION 

The following section details the pile-to-soil interaction theory used for the 

Guthrie County Bridge and Story County Bridge, finite-element models. This is 

taken directly from Chapter 2 of the report written by Greimann, Abendroth, 

Johnson, and Ebner [4]. This excerpt is reproduced with the permission of 

Greimann and Abendroth: 

The Winkler soil model [44,45] was used for the analysis of the soil/pile 

interaction. The model assumes that the soil can be represented as a series of 

vertical and lateral springs along the length of the pile and an end bearing point 

spring, as shown in Figure C.1. The model assumes that there is no interaction 

between the different soil springs as the pile is displaced. 

The soil characteristics of each of the three types of springs can be described 

by soil resistance versus displacement curves: (1) p-y curves, which describe the 

relationship between the lateral soil pressure (horizontal force per unit length of pile) 

and the corresponding lateral pile displacement: (2) f-z curves, which describe the 

relationship between skin friction (vertical force per unit length of pile) and the 

relative vertical displacement between the pile and the soil: and (3) q-z curves, 

which describe the relationship between the bearing stress (vertical force on 

effective pile tip area) at the pile tip and the pile tip settlement. All three types of 

curves assume the soil behavior to be nonlinear. Again, the Winkler model assumes 
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Figure C.1. Winkler soil model 

that these springs are uncoupled, that is, that motion at one spring does not affect 

another. 

Nonlinear soil pile interaction models are presented by a number of 

researchers [46-54]. The modified Ramberg-Osgood model [55] was used to 

approximate the p-y, f-z, and q-z soil resistance and displacement curves to model 

the nonlinear pile-to-soil interaction: 
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(C.1) 

p = [1 + l'_ "]~ 
y,, 

(C.2) 

in which, 

kh = initial soil stiffness 

p = generalized soil resistance 

Pu = ultimate soil resistance 

n = shape parameter for the modified Ramberg-Osgood 

curve 

y = generalized displacement 

Figure C.2 and Equation C.1 show the modified Ramberg-Osgood curve for a 

typical p-y curve. Similar equations for a typical f-z curve (with fmax. the maximum 

shear stress developed between the pile and soil, and kv. the initial vertical stiffness) 

or a typical q-z curve (with qmax. the maximum bearing stress at the pile tip, and kq, 

the initial point stiffness) were used. Figure C.3 shows the effect of the shape 

parameter, n, on the soil resistance and displacement behavior. The constants 

required in Equation C.1 were empirically determined from basic soil properties as 



www.manaraa.com

p 

" 0. ..._ 
0. 

247 

MODIFIED RAMBERG-OSGOOD 

ELASTIC, PERFECTLY PLASTIC 

y 

Figure C.2. Typical p-y curve 
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presented in Tables C.1, C.2, and C.3 [20,45, 56-58]. Typical values are listed for 

clay and sand in Tables C.4 and C.5, respectively for an HP10 x 42 steel pile. 

For practical purposes, kh is often assumed to be constant or to vary linearly 

with depth. Uncertainty in estimating soil behavior from standard tests will usually 

be consistent with the errors introduced by the use of such a simple soil modulus 

versus depth function [51 ]. For the parameters presented in Tables C.1 through C.5, 

the subgrade-reaction modules for clay soils are assumed to be constant within a 

soil layer and to vary linearly for granular soils. 
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Table C.1 . Parameters for p-y curve 

CASE n 

Soft clay .and stiff clay 1.0 

Very stiff clay 2.0 

Sand 3.0 

Pu (use lesser value) 

p,, = 9c,,B 

[ 
r ' o s ] P = 3+ - x+-·- x c B 

II B " c,, 

p
11 

= 9c
11
B 

[ 3 y' 2.0 ] B P = +-x+- x c 
" B " c,, 

p ,, =r x[B(kP -k0 )+xkP tan a tan jJ 

+ xk
11 

tanjJ(tan ¢ -tan a )] 

p ,, 

Yso 

Jy'x 

1.35 

e50 Axial strain at one-half peak stress difference from triax ial test; or use 0.02 for soft 
clay, 0.01 for stiff clay, or 0.005 for very stiff clay. 

Cu Cohesion from an unconsolidated, undrained test 
B Pile width 
y' Effective unit soil weight 
x Depth from soil surface 
<P Angle of internal friction 
kp = tan2

( 45° + cp/2) 
ka = tan2

( 45° - cp/2) 
ko = 1 - sincp 
a = <Pl2 for dense or medium sand, cp/3 for loose sand 
~ = 45° + <Pl2 
J = 200 for loose sand, 600 for medium sand, 1500 for dense sand 
Yso Displacement at one-half ultimate soil reaction: 2.5Be50 for soft and stiff clay, 

2 .0Be50 for very stiff clay. 
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Table C.2. Parameters for f-z curve 

CASE n fmax 
kv 

H PILES OTHERS 

Clay 1.0 The least of: Thelesserofcuorca IO/max 
2(d + br)Cu times pile perimeter zc 
2(d + 2b1)Ca 

2(dcu+ brCa) 

Sand 2.0 0.02N[2(d + 2br)] 0.04N times pile IO/max 
(kif) perimeter (kif) zc 

Cu Undrained cohesion of the clay soil, approximately 97N + 114 (psf) 
Ca Adhesion between soil and pile, acu (psf). See Figure C.4 for a . 
N Average standard penetration blow count 
x Depth from soil surface 
Zc Displacement at maximum force: 0.4 in. for sand, 0.25 in. for clay 
d, br Depth and flange width, respectively, of H shape 

Table C .3. Parameters for q-z curve 

CASE N fmax Kv 

1.0 IOqmax 
Clay 9Cu 

zc 

Sand 1.0 I Oqmax 
8Ncorr (ksf) 

zc 

Ncorr Corrected standard penetration test blow count at depth of pi le tip; equal to N if N 
~ 15 or 15 + 0.5(N - 15) if N > 15. 
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Table C.4. Soil properties and curve parameters for an HP10x42 pile in clay 

SOFT STIFF VERY STIFF 

SOIL PROPERTIES: 

Blow Count, N 3 15 40 

Saturated effective unit weight, y' (pcf) 50 60 65 

Dry unit weight , y (pcf) 90-110 115-135 120-140 

Undrained cohesion, Cu (psf) 400 1600 5000 

p-y CURVE PARAMETERS: 

n 1.0 1.0 1.0 

Saturated conditions Pu (kif) 3.0 or 12 or 37 or (use lesser value) 
1.0 + 0.24x 3.9 + 0.85x 12.5 + 10.1x 

Saturated conditions kh (ksf) 72 or 580 or 2200 or 
(use lesser value) 

24 + 5.8x 190 + 41x 750 + 610x 

f-z CURVE PARAMETERS: 

n 1.0 1.0 1.0 
Saturated conditions f max (kif) 1.3 3.6 6.2 (use lesser value) 
Saturated conditions kv (ksf) 620 1700 2960 (use lesser value) 

q-z CURVE PARAMETERS: 

n 1.0 1.0 1.0 
Saturated conditions qmax (ksf) 3.6 14 45 (use lesser value) 
Saturated conditions kq (kcf) 1700 6700 21000 (use lesser value) 
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Table C.5. Soil properties and curve parameters for an HP 1 Ox42 pile in sand 

LOOSE MEDIUM DENSE 

SOIL PROPERTIES: 

Blow Count, N 5 15 30 

Saturated effective unit weight, y' (pcf) 55 60 65 

Dry unit weight, y (pcf) 90-125 110-130 110-140 

Angle of friction , ~ 30° 35° 40° 

p-y CURVE PARAMETERS: 

n 3.0 3.0 3.0 

Saturated conditions Pu (kif) 0.070x2 + 0.15x2 + 0.26x2 + 
(use lesser value) 0.12x 0.17x 0.24x 

for x :::; 20ft for x :::; 18ft for x :::; 22ft 

1.5x 2.9x 5.9x 
for x > 20ft for x > 18ft for x > 22ft 

Saturated conditions kh (ksf) 8.0x 27x 72x 
(use lesser value) 

f-z CURVE PARAMETERS: 

n 1.0 1.0 1.0 

Saturated conditions f max (kif) 0.5 1.5 3.0 
(use lesser value) 
Saturated conditions kv (ksf) 150 450 900 (use lesser value) 

q-z CURVE PARAMETERS: 

n 1.0 1.0 1.0 
Saturated conditions qmax (ksf) 40 
(use lesser value) 

120 180 

Saturated conditions kq (kcf) 12000 
(use lesser value) 

36000 55000 
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